Suchergebnis: Katalogdaten im Herbstsemester 2023
Erdwissenschaften Master | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vertiefung in Geology | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Pflichtmodul Analytical Methods in Earth Sciences Es sind je 6KP innerhalb dem Teil A und 6KP innerhalb dem Teil B zu belegen. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Teil A: Mikroskopie Kurse | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
651-4045-00L | Microscopy of Metamorphic Rocks | W+ | 2 KP | 2G | A. Galli | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Repetition kristalloptischer Methoden mit dem Durchlicht-Polarisationsmikroskop. Untersuchung und Beschreibung des metamorphen Mineralbestands und Gefüges. Bestimmung der zeitlichen Abfolge von Kristallisations- und Deformationsprozessen. Abschätzung von Metamorphosegrad. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | - Erweiterte Kenntnisse in optischer Mineralogie. - Beherrschung mikroskopischer Mineral-Bestimmungsmethoden. - Identifizierung u. Charakterisierung von metamorphen Mineralen - Gesteinsbeschreibung und korrekte Namengebung aufgrund von modalem Mineralbestand sowie von Struktur und Textur. - Interpretation der Gesteinsgefüge sowie der Paragenese und der Mineralreaktionen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | - Kurze Repetition der wichtigsten optischen Eigenschaften und der mikroskopischen Methoden zur Identifikation der gesteinsbildenden Minerale. Im Besonderen: Auswertung der Interferenzfiguren im konoskopischen Strahlengang. - Mikroskopieren von Dünnschliffen typischer metam. Gesteine. - Studium und Beschreibung des metamorphen Mineralbestands und des Gefüges. Bestimmung der zeitlichen Abfolge von Kristallisations- und Deformationsprozessen. - Abschätzung von Metamorphosegrad anhand der Paragenesen. - Mengenbestimmung, Angabe der Prozentanteile von Komponenten - Wissenschaftliche Dokumentation dieser Information: Beschreibungen, Zeichnungen, Mikrophotographie mit verschiedenen Beleuchtungsarten und mit linear- oder zirkularpolarisiertem Licht. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Unterlagen zur Theorie (in Englisch) und den Übungen werden verteilt Die Unterlagen zum ETH Bachelor-Kurs im 6. Semester "Mikroskopie der Gesteine" enthalten den Grundstoff. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | - Puhan, D.: Anleitung zur Dünnschliffmikroskopie (1994). (Kristalloptik und praktisches Vorgehen. Durchblättern dieses Buches empfohlen) - Nesse, W.D.: Introduction to optical mineralogy. 3. Ed. (2004). Die Figuren zur Theorie werden im Kurs verwendet. Das Buch enthält opt. Mineraldaten. Benutzen oder kaufen Sie dieses Buch von Nesse, wenn Sie petrographische Arbeiten an diversen silikatischen Gesteinen durchführen. - Pichler, H. und Schmitt-Riegraf, C.: Gesteinsbildende Minerale im Dünnschliff (1993). Ein Mineral-Bestimmungsbuch. Empfohlen für petrographische Arbeiten (deutsch). 2. Auflage, ist vergriffen, ist eventuell bei älteren Studenten erhältlich. - Tröger, W.E.: Optische Bestimmung der gesteinsbildenden Minerale. Teil 1. Bestimmungstabellen (1982). Diese Tabellen sind im Kurs vorhanden. - Yardley, B.W.D., Mackenzie, W.S. und Guilford, C.: Atlas metamorpher Gesteine und ihrer Gefüge in Dünnschliffen (1992). Dieses Bilderbuch sollten Sie einmal durchblättern. Die Originalausgabe ist in English. Die Bücher sind auch in der D-ERDW-Bibliothek im Gebäude NO, D-Stock. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Teilnehmerzahl 24. Vorausgesetzt werden Grundkenntnisse in Kristallographie-Mineralogie-Petrographie. Sie müssen einführende Kurse in Polarisationsmikroskopie, Gesteinsmetamorphose und Strukturgeologie absolviert haben! Weitere Mikroskopie-Kurse am D-ERDW der ETH Zürich sind: - Mikroskopieren magmatischer Gesteine, anschliessend an diesen Kurs in der zweiten Semesterhälfte (P. Ulmer, IGP; Inst. für Geochemie und Petrologie) - Mikroskopieren der Sedimentgesteine (Geol. Institut) - Mikroskopieren von Erzmineralen, Auflicht-Mikroskopie (Th. Driesner, IGP) - Mikroskopieren von Mikrostrukturen (Geol. Institut) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4047-00L | Microscopy of Magmatic Rocks | W+ | 2 KP | 2G | R.‑G. Popa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Dieser Kurs vermittelt praktische Kenntnisse in der magmatischen Mikroskopie. Identifizierung magmatischer Minerale im Dünnschliff und in Kristallseparaten, sowie ein tieferes Verständnis von Mineralgleichgewichtsassemblages und Ungleichgewichtsstrukturen werden vermitteln. Dies sind nützliche Fähigkeiten für die Untersuchung magmatischer Prozesse und die Rekonstruktion magmatischer Bedingungen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Die Hauptziele sind der Erwerb von Fachwissen in den Bereichen: (1) Optische Bestimmung von Mineralien in magmatischen Gesteinen; (2) Identifizierung von magmatischen Gesteinen und ihrer Entstehungsgeschichte anhand von Mineralogie, Textur und Struktur; (3) Identifizierung der Eruptionsprozesse, die sich in den Gesteins widerspiegeln, und Verständnis dafür, wie die Mineralien zur Rekonstruktion der physikalisch-chemischen Bedingungen in der Magmakammer verwendet werden können; (4) Anwendung von Phasendiagrammen auf natürliche Gesteine. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | In diesem Kurs werden wir gemeinsam untersuchen, wie man plutonische und vulkanische Gesteine identifiziert und was ihre Mineralen und Strukturen über die Eruptionsbedingungen und -arten aussagen können. Wir werden verschiedene magmatische Evolutionslinien verfolgen, um die Entwicklung von Magmen zu verstehen, die unter verschiedenen Bedingungen und tektonischen Gegebenheiten entstanden sind, wobei wir uns auf die tholeiitischen, kalkalkalischen und alkalischen Serien konzentrieren. Wir werden uns ansehen, wie magmatische Bedingungen die Reihenfolge der Kristallisation und die Chemie der Mineralien beeinflussen und wie wir dieses Wissen nutzen können, um magmatische Prozesse zu rekonstruieren. Wir werden etwas über Gleichgewichtsassemblagen lernen, anhand derer wir sehen können, welche Minerale zusammengewachsen sind und dieselben magmatischen Bedingungen aufzeichnen (besonders wichtig für Petrologie und Mineralgeochemie), aber wir werden auch lernen, Ungleichgewichtsstrukturen zu interpretieren, die sich auf Prozesse beziehen, die häufig für Vulkanausbrüche verantwortlich sind. Ziel ist es, den Kursteilnehmern ein grundlegendes Verständnis dafür zu vermitteln, wonach wir in den mineralischen und strukturelle Aufzeichnungen von Eruptivgestein suchen müssen, wie wir diese Merkmale erkennen und wie wir sie bei der Untersuchung magmatischer Systeme richtig nutzen können. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Für die optische Bestimmung von (magmatischen) Mineralen mit dem Polarisationsmikroskop sind die Tabellen von Tröger ("Optische Bestimmung der gesteinsbildenden Minerale", 1982) besonders hilfreich. Diese sind in ausreichender Zahl im Seminarraum vorhanden. Zusätzliche Unterlagen werden während der Vorlesungen verteilt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Während des Kurses werden wir Ihnen wichtige Dokumente zur Lektüre anbieten oder vorschlagen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Dieser Kurs setzt Grundkenntnisse in optischer Mineralogie und im Umgang mit dem Polarisationsmikroskop voraus, die im vorhergehenden Kurs vermittelt werden: Mikroskopie metamorpher Gesteine" (A. Galli). Für externe Studenten ist ein gleichwertiger Kurs erforderlich, um hier teilnehmen zu können. Die Abgabe von 3 akzeptabel gelösten Hausaufgaben führt zu einer Erhöhung der Endnote um 0,25 (mit anderen Worten: wir geben Goodies). Weitere Mikroskopie-Kurse an der ETH Zürich am D-ERDW sind: Grundlagen der Gesteinsmikroskopie (M.W. Schmidt, Bachelor-Kurs) Microscopy of metamophic rocks (A. Galli, Voraussetzung für diesen Kurs) Sedimentary petrography and microscopy (V. Picotti & M.G. Fellin) Reflected Light Microscopy and Ore Deposits Practical (T. Driesner) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4051-00L | Reflected Light Microscopy and Ore Deposits Practical | W+ | 2 KP | 2P | T. Driesner | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Introduction to reflected light microscopy. Use of the microscope. Identification of opaque minerals through the use of determination tables. Description of textures and paragenetic sequences. Taking the course in parallel with Ore Deposits I (651-4037-00L) is recommended but not mandatory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Recognition of the most important ore minerals in polished section, interpretation of ore mineral textures from important ore deposit types (of hydrothermal, magmatic, sedimentary and metamorphic origin) in geological context. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Introduction to reflected light microscopy as a petrographic technique. Leaning main diagnostic criteria. Study of a small selection of important and characteristic ore minerals. Interpreting polished (thin) sections from the most important ore deposit types. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture ppt's and determination tables are handed out in class | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Spry, P.G., Gedlinske, B.L. (1987) Tables for the determination of common opaque minerals. Econ. Geol. Publishing Company, New Haven, 52 pp. (Hands on table book with optical and other properties of most important ore minerals in reflected light. Reprints can be still obtained from the SEG online bookstore. Copies of this book will be used in the course throughout.) Craig, J.R., Vaughan, D.J. (1994) Ore microscopy and ore petrography. Second edition, John Wiley Publisher, New York, 434 pp. Good graduate level introductory textbook, covers principles of reflected-light microscopy, interpretation of ore textures and most common ore mineral assemblages. Still available. --- Baumann, L. and Leeder, O. (1991) Einführung in die Auflichtmikroskopie. Deutscher Verlag für Grundstoffindustrie, Leipzig, 408 pp. (in german). (Good german equivalent of the Craig & Vaughan book.) Cabri, L.J., Vaughan, D.J. (1998) Modern approaches to ore and environmental mineralogy. Mineralogical Association of Canada, Short Course Series, v. 27, 421 pp. (Advances series of papers linking classical microscopical techniques with modern state-of-the-art microanalytical approaches (LA-ICP-MS, SIMS, PIXE etc.)) Mücke, A. (1989) Anleitung zur Erzmikroskopie. Enke, Stuttgart, 187 pp. (in german) (The technical part is a good german equivalent of Craigh & Vaughan while the sections on textures and their interpretation is much less systematic.) Ramdohr, P. (1980) The ore minerals and their intergrowths. Vols. 1 and 2, Pergamon Press, Oxford, 1207 pp. (Largest monograph about ore minerals and their textures, excellent reference book for assemblages and textures, but not useful for determination of common and typical minerals, interpretation of textures often outdated. Only available in the library.) Pracejus, B. (2008) The ore minerals under the microscope. An optical guide. Atlases in Geosciences 3, Elsevier, 875 pp. (Comprehensive collection of photomicrographs of ore minerals in reflected light. Not very helpful for determination purposes but instructive for comparison with own samples.) Uytebogaart, W., Burke, E.A.J. (1971) Tables for microscopic identification of ore minerals. Elsevier, Amsterdam, 430 pp. (Extensive and well organized tables for practical determination of common and less abundant ore minerals. Only available in the library.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Credits and mark based onan independent description of one selected polished section at the end of the course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4113-00L | Sedimentary Petrography and Microscopy | W+ | 2 KP | 2G | V. Picotti, M. G. Fellin | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Mikroskopische Untersuchung und Beschreibung von Karbonat (1. Semesterhälfte) und siliziklastischen Gesteinen (2. Hälfte), sowie kieseligen, phosphatischen und evaporitischen Sedimenten. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Beschreibung von Inhalt (Körner, Zement/Matrix), Gefüge, Klassifikation der wichtigen Sedimentgesteine im Dünnschliff. Diskussion und Interpretation des Sedimtationsmilieus. Diagenetische Prozesse. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Mikroskopie von Karbonat- und siliziklastischen Gesteinen, kieseligen Gesteinen und Phosphatgesteinen, ihren Ursprung und die Klassifikation. Diagenetische Prozesse. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Wird zur Verfügung gestellt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Tucker, M. E. (1985): Einführung in die Sedimentpetrologie. Ferdinand Enke Verlag, Stuttgart. 265 p. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Der vorhergehende Besuch von anderen MSc Mikroskopiekursen (magmatische oder metamorphe Gesteine) ist keine Voraussetzung, wenn im Bachelorprogramm bereits ein Kurs in Mikroskopie der Gesteine absolviert wurde. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Teil B: Methoden | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4055-00L | Analytical Methods in Petrology and Geology | W+ | 3 KP | 2G | J. Allaz, S. Bernasconi, M. Guillong, L. Zehnder | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Practical work in analytical chemistry for Earth science students. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Knowledge of some analytical methods used in Earth sciences, introduction to data interpretation, writing of a scientific report. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Introduction to analytical geochemistry and atom physics, notably: - X-ray diffraction (XRD), - X-ray fluorescence analysis (XRF), - Electron Probe Microanalyzer (EPMA), - Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS), - Mass spectroscopy for light isotopes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Short handouts for each analytical method. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4117-00L | Sediment Analysis Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L). | W+ | 3 KP | 2G | M. G. Fellin, A. Gilli, V. Picotti | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Theoretische Grundlagen und Anwendungen von einfachen Methoden der Sedimentuntersuchung. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Das Ziel ist die korrekte Anwendung der Korngrösse- und Gefüge-Analyse an Sedimenten, um die sedimentären Prozesse und Ablagerungsräume zu bestimmen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-0046-00L | Electron Microscopy Course (SEM and EPMA) | W+ | 3 KP | 3G | J. Allaz, L. Grafulha Morales | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Theory and lab demo of scanning electron microscope (SEM) and electron microprobe analysis (EPMA) applied to geological materials: introduction to the instruments, interaction of electron with matter, electron imaging (SE, BSE, CL), electron backscatter diffraction (EBSD), X-ray analysis for the chemical characterisation of solid material at the micron-scale. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Understand how the instrument works, why it is used, and how the different signals are being generated and analysed. Ability to treat and to present analytical results, such as calculating a mineral formula from a mineral analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Physical principles of electron microscopy: electron optics, interaction of electrons with matter, production of X-rays, interaction of X-rays with matter, X-rays detection and analysis. The second part of the course includes several demonstrations on various SEMs (at ERDW and ScopeM) and one EPMA at DERDW. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Script will be provided, along with copies of the course presentations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | [HIGHLY recommended] - Goldstein, J.I. et al., (2003, third ed.): Scanning Electron Microscopy and X-Ray Microanalysis. https://link.springer.com/book/10.1007/978-1-4615-0215-9 [Additional references] - Reed, S.J.B. (2005, second ed.): Electron Microprobe Analysis and Scanning Electron Microscopy in Geology. - Reed S.J.B. (1993, second ed.): Electron Microprobe Analysis - Anderson, C.A. (1973): Microprobe Analysis. Wiley & Sons, New York. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | No prerequisite required beside basic knowledge of petrology and mineralogy. Attending the "Analytical Methods in Geology and Petrology" prior to this course is an advantage. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4063-00L | X-Ray Powder Diffraction | W+ | 3 KP | 2G | M. Plötze | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | In the course the students learn to measure X-ray diffraction patterns of minerals and to evaluate these using different software for qualitative and quantitative mineral composition as well as crystallographic parameters. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Upon successful completion of this course students are able to: - describe the principle of X-ray diffraction analysis - carry out a qualitative and quantitative mineralogical analysis independently, - critically assess the data, - communicate the results in a scientific report. The competencies of system understanding, concept development, and measurement methods are taught and examined. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Fundamental principles of X-ray diffraction Setup and operation of X-ray diffractometers Interpretation of powder diffraction data Qualitative and quantitative phase analysis of crystalline powders (e.g. with Rietveld analysis) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Selected handouts will be made available in the lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | BRINDLEY G.W. and BROWN G. (ed) Crystal structures of clay minerals and their X-ray identification. London : Mineralogical Society monograph no. 5 (1984) (Link) DINNEBIER, R.E. et al.: Powder Diffraction. Royal Society of Chemistry, Cambridge, 2008. (http://pubs.rsc.org/en/Content/eBook/978-0-85404-231-9) PECHARSKY, V.K. and ZAVALIJ, P.Y: Fundamentals of Powder Diffraction and Structural Characterization of Materials. Springer, 2009. (https://link.springer.com/book/10.1007/978-0-387-09579-0?page=2#toc) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The course includes a high portion of practical exercises in sample preparation as well as measurement and evaluation of X-ray powder diffraction data. Own sample will be analysed qualitatively and quantitatively. Knowledge in mineralogy of this system is essential. Software will be provided for future use on own Laptop. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Wahlpflichtmodule Geology Innerhalb der Majors Geology sind mindestens zwei Wahlpflichtmodule zu absolvieren. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Biogeochemistry | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Biogeochemistry: Obligatorische Fächer Die obligatorischen Fächer dieses Moduls finden im Frühjahrssemester statt. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Biogeochemistry: Wahlpflichtfächer | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4043-00L | Sedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L). | W | 3 KP | 2G | V. Picotti, A. Gilli, H. Stoll, H. Zhang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course will focus on biological amd chemical aspects of sedimentation in marine environments. Marine sedimentation will be traced from coast to deep-sea. The use of stable isotopes palaeoceanography will be discussed. Neritic, hemipelagic and pelagic sediments will be used as proxies for environmental change during times of major perturbations of climate and oceanography. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | -You will understand chemistry and biology of the marine carbonate system -You will be able to relate carbonate mineralogy with facies and environmental conditions -You will be familiar with cool-water and warm-water carbonates -You will see carbonate and organic-carbon rich sediments as part of the global carbon cycle -You will be able to recognize links between climate and marine carbonate systems (e.g. acidification of oceans and reef growth) -You will be able to use geological archives as source of information on global change -You will have an overview of marine sedimentation through time | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | -carbonates,: chemistry, mineralogy, biology -carbonate sedimentation from the shelf to the deep sea -carbonate facies -cool-water and warm-water carbonates -organic-carbon and black shales -C-cycle, carbonates, Corg : CO2 sources and sink -Carbonates: their geochemical proxies for environmental change: stable isotopes, Mg/Ca, Sr -marine sediments thorugh geological time -carbonates and evaporites -lacustrine carbonates -economic aspects of limestone | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | no script. scientific articles will be distributed during the course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | We will read and critically discuss scientific articles relevant for "biological and chemical processes in marine and lacustrine systems" | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The grading of students is based on in-class exercises and end-semester examination. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4057-00L | Climate History and Palaeoclimatology | W | 4 KP | 2G | H. Stoll, H. Zhang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Climate history and paleoclimatology explores how the major features of the earth's climate system have varied in the past, and the driving forces and feedbacks for these changes. The major topics include the earth's CO2 concentration and mean temperature, the size and stability of ice sheets and sea level, the amount and distribution of precipitation, and the ocean heat transport. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The student will be able to describe the natural factors lead to variations in the earth's mean temperature, the growth and retreat of ice sheets, and variations in ocean and atmospheric circulation patterns, including feedback processes. Students will be able to interpret evidence of past climate changes from the main climate indicators or proxies recovered in geological records. Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitudes and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate changes over the next century to millennia. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course spans 5 thematic modules: 1. Cyclic variation in the earth's orbit and the rise and demise of ice sheets. Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? How stable or fragile is the ocean heat conveyor, past and present? 2. Feedbacks on climate cycles from CO2 and methane. What drives CO2 and methane variations over glacial cycles? What are the feedbacks with ocean circulation and the terrestrial biosphere? 3. Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in global monsoon systems? 4. Century-scale droughts and civil catastrophes. Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations? 5. How sensitive is Earth's long term climate to CO2 and cloud feedbacks? What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years? The weekly two hour lecture periods will feature lecture on these themes interspersed with short interactive tasks to apply new knowledge. Over the semester, student teams will each present in class one debate based on two scientific articles of contrasting interpretations. With flexible scheduling, students will participate in a laboratory activity to generate a new paleoclimate record from stalagmites. Student teams will be supported by an individual tutorial meeting to assist in debate preparation and another to assist in the interpretation of the lab activity data. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Palaeoclimatology | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Palaeoclimatology: Obligatorische Fächer | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4057-00L | Climate History and Palaeoclimatology | W+ | 4 KP | 2G | H. Stoll, H. Zhang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Climate history and paleoclimatology explores how the major features of the earth's climate system have varied in the past, and the driving forces and feedbacks for these changes. The major topics include the earth's CO2 concentration and mean temperature, the size and stability of ice sheets and sea level, the amount and distribution of precipitation, and the ocean heat transport. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The student will be able to describe the natural factors lead to variations in the earth's mean temperature, the growth and retreat of ice sheets, and variations in ocean and atmospheric circulation patterns, including feedback processes. Students will be able to interpret evidence of past climate changes from the main climate indicators or proxies recovered in geological records. Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitudes and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate changes over the next century to millennia. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course spans 5 thematic modules: 1. Cyclic variation in the earth's orbit and the rise and demise of ice sheets. Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? How stable or fragile is the ocean heat conveyor, past and present? 2. Feedbacks on climate cycles from CO2 and methane. What drives CO2 and methane variations over glacial cycles? What are the feedbacks with ocean circulation and the terrestrial biosphere? 3. Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in global monsoon systems? 4. Century-scale droughts and civil catastrophes. Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations? 5. How sensitive is Earth's long term climate to CO2 and cloud feedbacks? What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years? The weekly two hour lecture periods will feature lecture on these themes interspersed with short interactive tasks to apply new knowledge. Over the semester, student teams will each present in class one debate based on two scientific articles of contrasting interpretations. With flexible scheduling, students will participate in a laboratory activity to generate a new paleoclimate record from stalagmites. Student teams will be supported by an individual tutorial meeting to assist in debate preparation and another to assist in the interpretation of the lab activity data. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Palaeoclimatology: Wahlpflichtfächer | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4043-00L | Sedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L). | W | 3 KP | 2G | V. Picotti, A. Gilli, H. Stoll, H. Zhang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course will focus on biological amd chemical aspects of sedimentation in marine environments. Marine sedimentation will be traced from coast to deep-sea. The use of stable isotopes palaeoceanography will be discussed. Neritic, hemipelagic and pelagic sediments will be used as proxies for environmental change during times of major perturbations of climate and oceanography. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | -You will understand chemistry and biology of the marine carbonate system -You will be able to relate carbonate mineralogy with facies and environmental conditions -You will be familiar with cool-water and warm-water carbonates -You will see carbonate and organic-carbon rich sediments as part of the global carbon cycle -You will be able to recognize links between climate and marine carbonate systems (e.g. acidification of oceans and reef growth) -You will be able to use geological archives as source of information on global change -You will have an overview of marine sedimentation through time | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | -carbonates,: chemistry, mineralogy, biology -carbonate sedimentation from the shelf to the deep sea -carbonate facies -cool-water and warm-water carbonates -organic-carbon and black shales -C-cycle, carbonates, Corg : CO2 sources and sink -Carbonates: their geochemical proxies for environmental change: stable isotopes, Mg/Ca, Sr -marine sediments thorugh geological time -carbonates and evaporites -lacustrine carbonates -economic aspects of limestone | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | no script. scientific articles will be distributed during the course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | We will read and critically discuss scientific articles relevant for "biological and chemical processes in marine and lacustrine systems" | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The grading of students is based on in-class exercises and end-semester examination. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sedimentology | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sedimentology: Obligatorische Fächer | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4041-00L | Sedimentology I: Physical Processes and Sedimentary Systems | W+ | 3 KP | 2G | V. Picotti | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Sediments preserved a record of past landscapes. This courses focuses on understanding the processes that modify sedimentary landscapes with time and how we can read this changes in the sedimentary record. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The students learn basic concepts of modern sedimentology and stratigraphy in the context of sequence stratigraphy and sea level change. They discuss the advantages and pitfalls of the method and look beyond. In particular we pay attention to introducing the importance of considering entire sediment routing systems and understanding their functionning. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Details on the program will be handed out during the first lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | The sedimentary record of sea-level change Angela Coe, the Open University. Cambridge University Press | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The grading of students is based on in-class exercises and end-semester examination. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4043-00L | Sedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L). | W+ | 3 KP | 2G | V. Picotti, A. Gilli, H. Stoll, H. Zhang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course will focus on biological amd chemical aspects of sedimentation in marine environments. Marine sedimentation will be traced from coast to deep-sea. The use of stable isotopes palaeoceanography will be discussed. Neritic, hemipelagic and pelagic sediments will be used as proxies for environmental change during times of major perturbations of climate and oceanography. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | -You will understand chemistry and biology of the marine carbonate system -You will be able to relate carbonate mineralogy with facies and environmental conditions -You will be familiar with cool-water and warm-water carbonates -You will see carbonate and organic-carbon rich sediments as part of the global carbon cycle -You will be able to recognize links between climate and marine carbonate systems (e.g. acidification of oceans and reef growth) -You will be able to use geological archives as source of information on global change -You will have an overview of marine sedimentation through time | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | -carbonates,: chemistry, mineralogy, biology -carbonate sedimentation from the shelf to the deep sea -carbonate facies -cool-water and warm-water carbonates -organic-carbon and black shales -C-cycle, carbonates, Corg : CO2 sources and sink -Carbonates: their geochemical proxies for environmental change: stable isotopes, Mg/Ca, Sr -marine sediments thorugh geological time -carbonates and evaporites -lacustrine carbonates -economic aspects of limestone | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | no script. scientific articles will be distributed during the course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | We will read and critically discuss scientific articles relevant for "biological and chemical processes in marine and lacustrine systems" | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The grading of students is based on in-class exercises and end-semester examination. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sedimentology: Wahlpflichtfächer | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4901-00L | Quaternary Dating Methods | W | 2 KP | 1G | I. Hajdas, M. Christl | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Reconstruction of time scales is critical for all Quaternary studies in Geology and Archeology. Various methods are applied depending on the time range of interest and the archive studied. In this lecture, we focus on the last 50 ka and the methods that are most frequently used for dating Quaternary sediments and landforms in this time range. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Students will be made familiar with the details of the six dating methods through lectures on basic principles, analysis of case studies, solving of problem sets for age calculation and visits to dating laboratories. At the end of the course, students will: 1. understand the fundamental principles of the most frequently used dating methods for Quaternary studies. 2. choose which dating method (or combination of methods) suits a certain field problem. 3. critically read and evaluate the application of dating methods in scientific publications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | 1. Introduction: Isotopes and decay 2. Radiocarbon dating: principles and applications 3. AMS technique and its application in Quaternary geochronology 4. U-series disequilibrium dating 5. Luminescence dating 6. Introduction to incremental: varve counting, dendrochronology, and ice cores chronologies 7. Dating anthropogenic records | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Visit to radiocarbon lab, cosmogenic nuclide lab, and accelerator (AMS) facility. Required: attending the lecture, visiting laboratories, handing back solutions for problem sets, short presentations or written report Optional (individual): 1-5 days of hands-on radiocarbon dating at the 14C lab, ETH Hoenggerberg | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4063-00L | X-Ray Powder Diffraction | W | 3 KP | 2G | M. Plötze | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | In the course the students learn to measure X-ray diffraction patterns of minerals and to evaluate these using different software for qualitative and quantitative mineral composition as well as crystallographic parameters. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Upon successful completion of this course students are able to: - describe the principle of X-ray diffraction analysis - carry out a qualitative and quantitative mineralogical analysis independently, - critically assess the data, - communicate the results in a scientific report. The competencies of system understanding, concept development, and measurement methods are taught and examined. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Fundamental principles of X-ray diffraction Setup and operation of X-ray diffractometers Interpretation of powder diffraction data Qualitative and quantitative phase analysis of crystalline powders (e.g. with Rietveld analysis) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Selected handouts will be made available in the lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | BRINDLEY G.W. and BROWN G. (ed) Crystal structures of clay minerals and their X-ray identification. London : Mineralogical Society monograph no. 5 (1984) (Link) DINNEBIER, R.E. et al.: Powder Diffraction. Royal Society of Chemistry, Cambridge, 2008. (http://pubs.rsc.org/en/Content/eBook/978-0-85404-231-9) PECHARSKY, V.K. and ZAVALIJ, P.Y: Fundamentals of Powder Diffraction and Structural Characterization of Materials. Springer, 2009. (https://link.springer.com/book/10.1007/978-0-387-09579-0?page=2#toc) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The course includes a high portion of practical exercises in sample preparation as well as measurement and evaluation of X-ray powder diffraction data. Own sample will be analysed qualitatively and quantitatively. Knowledge in mineralogy of this system is essential. Software will be provided for future use on own Laptop. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4341-00L | Source to Sink Sedimentary Systems | W | 3 KP | 2G | T. I. Eglinton, J. Hemingway, L. Bröder, M. Griepentrog | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The transfer and redistribution of mass and chemical elements at the Earth’s surface is controlled by a wide range of processes that will affect the magnitude and nature of fluxes exported from continental fluvial systems. This course addresses the production, transport, and deposition of sediments from source to sink and their interaction with biogeochemical cycles. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | This course aims at integrating different earth science disciplines (geomorphology, geochemistry, and tectonics) to gain a better understanding of the physical and biogeochemical processes at work across the sediment production, routing, and depositional systems. It will provide insight into how it is actually possible to “see a world in a grain of sand” by taking into account the cascade of physical and chemical processes that shaped and modified sediments and chemical elements from their source to their sink. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Lectures will introduce the main source to sink concepts and cover physical and biogeochemical processes in upland, sediment producing areas (glacial and periglacial processes; mass movements; hillslopes and soil processes/development; critical zone biogeochemical processes). Field excursion (3 days, 30 September -2 October 2022): will cover the upper Rhône from the Rhône glacier to the Rhône delta in Lake Geneva) as small scale source-to-sink system. Practicals comprise (I) a small autonomous project on the Rhône catchment based on samples collected during the field trip and (II) an independent report on how you would design, build, and implement your own source-to-sink study. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture notes are provided online during the course. They summarize the current subjects week by week and provide the essential theoretical background. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Suggested references : - "Sediment routing systems: the fate of sediments from Source to Sink" by Philip A. Allen (Cambridge University Press) - "Principles of soilscape and landscape evolution by Garry Willgoose" (Cambridge University Press) - "Geomorphology, the mechanics and chemistry of landscapes" by Robert S. Anderson & Suzanne P. Anderson (Cambridge University Press) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4243-00L | Seismic Stratigraphy and Facies | W | 2 KP | 3G | G. Eberli | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course teaches the techniques of seismic interpretation for solving geological and environmental problems. A special focus is given to the seismic facies analysis and seismic sequence stratigraphy of different depositional systems. In addition, examples are presented how seismic data can be integrated into research projects in basin analysis, paleoceanography and paleoclimatology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | 1. Acquire techniques for a comprehensive interpretation of seismic sections for solving geologic, stratigraphic and environmental problems 2. Correlation of seismic facies and seismic attributes to lithologic facies in different sedimentary systems 3. Learn the principles and techniques of seismic sequence stratigraphy and the differences between lithostratigraphy and sequence stratigraphy 4. Learn to integrate seismic data into paleoceonagraphic and paleoclimatic research. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The four day course consists of lectures that are accompanied by a variety of exercises. Day 1: Introduction seismic facies analysis with exercise Seismic resolution Seismic facies of contourite drift systems and their value as physical indicators of global current changes. Day 2: Seismic attributes and seismic geomorphology Siliciclastic deltas, shelves and turbidite systems, 2D-3D Exercise: Seismic section Tarragon Basin and reconstructing the basin evolution with respect to the climate conditions at the end of the Miocene. Seismic facies carbonate systems Carbonates as recorders of sea level and paleoclimate Deepwater environments, including cold-water coral habitats Day 3: Carbonates versus volcanic seismic facies Introduction seismic attributes Faults and structures on seismic sections Seismic facies of mixed systems with Exercises from Canada and the Paradox Basin Day 4: Sea level and sedimentation Telling ages on seismic section Seismic stratigraphy and sequence stratigraphy Exercise: Sequence analysis Straits of Andros Final discussion | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | An original script (110 pages) designed for the class will be distributed at the beginning of the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Books Seismic Interpretation of Depositional Systems: Ariztegui, D. and Wildi, W. (eds.), 2003, Lake Systems from Ice Age to Industrial Time. Eclogae Geologicae Helvetiae Special Issue, v. 96, S1-S133. Bacon, M., Simm, R. and Redshaw, T., 2003, 3-D Seismic Interpretation. Cambridge University Press, 112 pp. Chopra, S., and K. J. Marfurt, 2007, Seismic attributes for prospect identification and reservoir characterization. SEG Geophysical Development Series, pp 481. Davies, R.J., Posementier, H.W., Wood, L.J., and Cartwright, J.A. (eds.), 2007, Seismic Geomorphology. Geological Society Special Publication 277, pp274. Eberli, G.P., Massaferro, J.L., and Sarg, J.F. (eds.), 2004, Seismic Imaging of Carbonate Reservoirs and Systems. AAPG Memoir 81. Rebesco, M. & Camerlenghi, A., 2008, Contourites. Developments in Sedimentology 60, Elsevier.Weimer, P. and Davis, T.L. (eds.), 1996, Applications of 3-D seismic data to exploration and production. AAPG Studies in Geology, No. 42 and SEG Geophysical Development Series, No. 5., pp. 270. Gupta, S. and Cowie, P. (eds). 2000, Controls in the Stratigraphic Development of Extensional Basins. Basin Research Special Issue, v. 12, 445pp Harris, P.M., Saller, A.H., and Simo, J.A. (eds.), 1999, Advances in carbonate sequence stratigraphy: application to reservoirs, outcrops, and models. SEPM Special Publication v. 63. Payton, C.E., (ed.), 1977, Seismic stratigraphy-applications to hydrocarbon exploration. AAPG Memoir 26, 516pp. Van Wagoner, J.C., R.M. Mitchum, K.M. Campion, and V.D. Rahmanian, 1990, Siliciclastic sequence stratigraphy in well logs, cores, and outcrops. AAPG Methods in Exploration Series, No. 7, 55pp. Weimer, P. and Posamentier, H.W., 1993, Siliciclastic Sequence Stratigraphy: Recent Developments and Applications. AAPG Memoir 58. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Basic knowledge in sedimentology and stratigraphy | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Structural Geology | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Structural Geology: Obligatorische Fächer | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4132-00L | Field Course IV: Alpine Field Course Priority is given to D-ERDW students. If space is available UZH Geography and Earth System Sciences students may attend this field course at full cost. No registration through myStudies. The registration for excursions and field courses goes through http://exkursionen.erdw.ethz.ch only. | W+ | 3 KP | 6P | W. Behr, V. Picotti | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Students who want to participate hand in a short motivation letter (max. 1 page A4). The final selection will be based on this motivation letter. Deadline for motivation letter: 31 October 2018 Final decision 20 November 2018 Students registering for the course confirm having read and accepted the terms and conditions for excursions and field courses of D-ERDW Link | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Structural Geology: Wahlpflichtfächer | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4111-00L | Experimental Rock Physics and Deformation | W | 3 KP | 2G | L. Tokle, C. Madonna, A. S. Zappone | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | We illustrate some physical properties, deformation mechanisms, and define flow laws. We show the fundamental techniques for the measurement in laboratory of density, permeability, elastic properties and deformation. We presented actual case studies and discuss upscaling from laboratory to field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The objective of this course is to introduce rock physics and rock deformation, and discuss the aid of laboratory tests to interpretation at large scale . Rock Physics provides the understanding to connect geomechanical and geophysical data to the intrinsic properties of rocks, such as mineral composition and texture. Rock Physics is a key component in geo-resources exploration and exploitation, and in geo-hazard assessment. For rock deformation we will illustrate how to determined flow-laws of rocks from experiments and how to extrapolate to natural conditions. Since the time scale of laboratory experiments is several orders of magnitude faster than nature, we will compare the microstructure of natural rocks with that produced during the experiments to prove that the same mechanisms are operating. For this purpose, the fundamental techniques of experimental rock deformation will be illustrated and test on natural rock samples in the plastic deformation regime (high temperature) as well in the brittle regime ( room temperature) will be presented. We will perform tests in the lab, to acquire the data, to correct for calibration and to process the data and finally to interpret the data. The course is at Master student level, but will be useful for PhDs students who want to begin to work in experimental deformation or who want to know the meaning and the limitation of laboratory flow-laws for geodynamic modelling | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course will focus on research-based term project, lectures will alternate with laboratory demonstrations. We will illustrate how intrinsic properties of rocks (mineral composition, porosity, pore fluids, crystallographic orientation, microstructures) are connected to the following physical properties: - permeability; - elastic properties for seismic interpretations; - anisotropy of the above physical properties. We will measure some of those parameters in laboratory and discuss real case studies and applications. Principles of deformation mechanisms, flow laws, and deformation mechanism maps will be presented in lectures. In laboratory we will show: - Experimental deformation rigs (gas, fluid and solid confining media); - Main part of the apparatus (mechanical, hydraulic, heating system, data logging); - Calibration of an apparatus (distortion of the rig; transducers calibration); - Various types of tests (axial deformation; diagonal cut and torsion; deformation; constant strain rate tests; creep tests; stepping tests); | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The course of Structural Geology (651-3422-00L) is highly recommended before attending this course. Moreover the students should have basic knowledge in geophysics and mineralogy/crystallography. In doubt, please contact the course responsible beforehand. |
- Seite 1 von 3 Alle