Search result: Catalogue data in Autumn Semester 2023
Earth Sciences Master | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Major in Geology | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Compulsory Module in Analytical Methods in Earth Sciences Students have to complete 6 credits in part A, and 6 credits in part B. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part A: Microscopy Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
651-4045-00L | Microscopy of Metamorphic Rocks | W+ | 2 credits | 2G | A. Galli | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Repetition of methods using optic properties of crystals and the polarising microscope. Identification of minerals and metamorphic parageneses. Description and interpretation of microstructures. Age relationship of crystallisation and deformation. Estimation of metamorphic grade. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | - Advanced knowledge in optical mineralogy - Application of methods to determine minerals in thin sections - Identification and characterisation of metamorphic minerals - Description of rocks. Derive correct petrographic rock name, based on modal abundance and microstructure/texture - Interpretation of rock fabric/microstructure, parageneses and mineral reactions | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | - Repetition of principal optical properties and of microscopic methods to identify minerals. Emphasis on interpretation of interference figures. - Study typical metamorphic rocks in thin sections - Description and interpretation of parageneses and texture/microstructures. Study the age relationship of crystallisation and deformation. - Estimation of metamorphic grade - Quantification: To determine volume percentage of rock components - Scientific documentation: Descriptions, drawings, photomicrography using different kinds of illumination and using plane- or circular-polarised light. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | handouts with additional information on theory and for exercises, in English. To brush up knowledge in optical mineralogy read the relevant chapters in the book of W.D. Nesse (2004). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | - Nesse, W.D.: Introduction to optical mineralogy. 3. Ed. (2004). Figures from this book will be used in lectures. Besides the theory, this book describes all optical properties of important minerals. Petrographers working on varying types of silicate rocks should have a look at this book. -Yardley, B.W.D., Mackenzie, W.S. und Guilford, C. (1990): Atlas of metamorphic rocks and their textures. Longman Scientific. With nice pictures. Also available in the D-ERDW library, NO building, on D-floor. - Vernon, R.H. (2004): A practical guide to rock microstructures. Cambridge Univ. Press. 594 pages. Includes color photos and a glossary. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Number of participants 24. Participants should have basic knowledge in crystallography, mineralogy and petrology, and have taken practical courses in microscopy of thin sections, as well as lectures in metamorphic petrology and structural geology! Other microscopy courses at department D-ERDW are on: - magmatic rocks, following this course in second half of semester (P. Ulmer, IGP; Inst. for Geochemistry and Petrology) - sedimentary rocks (Geol. Institute) - ore minerals (reflected light microscopy, Th. Driesner, IGP) - microstructures, deformed rocks (Geol. Institute) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4047-00L | Microscopy of Magmatic Rocks | W+ | 2 credits | 2G | R.‑G. Popa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course provides practical knowledge in magmatic microscopy. It includes the identification of common igneous minerals in thin section and in crystal separates, but also aims at providing a deeper understanding of mineral equilibrium assemblages and disequilibrium textures. These are useful skills in studying magmatic processes and reconstructing igneous conditions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The main objectives are to acquire expertise in: (1) Optical determination of minerals in igneous rocks; (2) Identification of igneous rocks and their emplacement history based on mineralogy, structure and texture; (3) Identifying the igneous processes that are revealed by the rock record, and understanding how to use the minerals to reconstruct magma chamber physical-chemical conditions; (4) Application of phase diagrams to natural rocks. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | In this class, we’ll look together at how to identify plutonic and volcanic rocks and at what their minerals and textures can tell us about the igneous conditions and styles of eruption. We’ll follow different magmatic lines of descent to understand the evolution of magmas formed in different conditions and tectonic settings, focusing on the tholeiitic, calc-alkaline and alkaline series. We’ll look at how magmatic conditions affect the order of crystallization and the chemistry of minerals, and how we can use this knowledge to reconstruct magmatic processes. We’ll learn about equilibrium assemblages, which allow us to see which minerals grew together and record the same magmatic conditions (this is key for petrology and mineral geochemistry), but we’ll also learn to interpret disequilibrium textures, which relate to processes commonly responsible for volcanic eruptions. The plan is to equip the participants of the course with a basic understanding of what we need to look for in the mineral and textural record of igneous rocks, of how to identify those features and how to use them correctly when studying magmatic systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | For the optical determination of (igneous) minerals using the polarizing microscope, the tables of Tröger ('Optische Bestimmung der gesteinsbildenden Minerale', Optical determination of rock-forming minerals, 1982) are particularly useful. These are available in sufficient number in the class room. Additional notes will be distributed during the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | During the class, we’ll provide or suggest key papers to read. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | This class requires basic knowledge of optical mineralogy and the use of the polarizing microscope, which is taught in the previous class: ‘Microscopy of metamorphic rocks’ (A. Galli). For external students, an equivalent course is required to follow this practical course. Delivering 3 acceptably solved homework assignments results in an increase of the final grade by 0.25 (in other words, we give goodies). Other microscope courses taught at ETH Zürich at the D-ERDW are: Basics of optical mineralogy and petrography (M.W. Schmidt, BSc-course in German) Microscopy of metamorphic rocks (A. Galli, prerequisite for this course) Sedimentary petrography and microscopy (V. Picotti & M.G. Fellin) Reflected Light Microscopy and Ore Deposits Practical (T. Driesner) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4051-00L | Reflected Light Microscopy and Ore Deposits Practical | W+ | 2 credits | 2P | T. Driesner | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to reflected light microscopy. Use of the microscope. Identification of opaque minerals through the use of determination tables. Description of textures and paragenetic sequences. Taking the course in parallel with Ore Deposits I (651-4037-00L) is recommended but not mandatory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Recognition of the most important ore minerals in polished section, interpretation of ore mineral textures from important ore deposit types (of hydrothermal, magmatic, sedimentary and metamorphic origin) in geological context. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Introduction to reflected light microscopy as a petrographic technique. Leaning main diagnostic criteria. Study of a small selection of important and characteristic ore minerals. Interpreting polished (thin) sections from the most important ore deposit types. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture ppt's and determination tables are handed out in class | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Spry, P.G., Gedlinske, B.L. (1987) Tables for the determination of common opaque minerals. Econ. Geol. Publishing Company, New Haven, 52 pp. (Hands on table book with optical and other properties of most important ore minerals in reflected light. Reprints can be still obtained from the SEG online bookstore. Copies of this book will be used in the course throughout.) Craig, J.R., Vaughan, D.J. (1994) Ore microscopy and ore petrography. Second edition, John Wiley Publisher, New York, 434 pp. Good graduate level introductory textbook, covers principles of reflected-light microscopy, interpretation of ore textures and most common ore mineral assemblages. Still available. --- Baumann, L. and Leeder, O. (1991) Einführung in die Auflichtmikroskopie. Deutscher Verlag für Grundstoffindustrie, Leipzig, 408 pp. (in german). (Good german equivalent of the Craig & Vaughan book.) Cabri, L.J., Vaughan, D.J. (1998) Modern approaches to ore and environmental mineralogy. Mineralogical Association of Canada, Short Course Series, v. 27, 421 pp. (Advances series of papers linking classical microscopical techniques with modern state-of-the-art microanalytical approaches (LA-ICP-MS, SIMS, PIXE etc.)) Mücke, A. (1989) Anleitung zur Erzmikroskopie. Enke, Stuttgart, 187 pp. (in german) (The technical part is a good german equivalent of Craigh & Vaughan while the sections on textures and their interpretation is much less systematic.) Ramdohr, P. (1980) The ore minerals and their intergrowths. Vols. 1 and 2, Pergamon Press, Oxford, 1207 pp. (Largest monograph about ore minerals and their textures, excellent reference book for assemblages and textures, but not useful for determination of common and typical minerals, interpretation of textures often outdated. Only available in the library.) Pracejus, B. (2008) The ore minerals under the microscope. An optical guide. Atlases in Geosciences 3, Elsevier, 875 pp. (Comprehensive collection of photomicrographs of ore minerals in reflected light. Not very helpful for determination purposes but instructive for comparison with own samples.) Uytebogaart, W., Burke, E.A.J. (1971) Tables for microscopic identification of ore minerals. Elsevier, Amsterdam, 430 pp. (Extensive and well organized tables for practical determination of common and less abundant ore minerals. Only available in the library.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Credits and mark based onan independent description of one selected polished section at the end of the course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4113-00L | Sedimentary Petrography and Microscopy | W+ | 2 credits | 2G | V. Picotti, M. G. Fellin | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Microscopy of carbonate (1st half of semester) and sliciclastic rocks (2nd half) rocks as well as siliceous, phosphatic and evaporitic sediements. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Description of grains and cement/matrix, texture, classification of the main sedimentary rocks. Discussion and interpretation of the environment of sedimentation. Diagenetic Processes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Microscopy of carbonate and siliciclastic rocks, siliceous and phosphatic rocks, their origin and classification. Diagenesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | English textbooks recommended | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Tucker, M.E. (2001): Sedimentary Petrology-An introduction to the Origin of Sedimentary Rocks, 3rd Editition. Blackwell Science Ltd., Oxford, 262 p. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The earlier attendance of other MSc microscopy courses (e.g. magmatic and metamorphic rocks) is not required if during the BSc a general course on microscopy of rocks was completed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part B: Methods | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4055-00L | Analytical Methods in Petrology and Geology | W+ | 3 credits | 2G | J. Allaz, S. Bernasconi, M. Guillong, L. Zehnder | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Practical work in analytical chemistry for Earth science students. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Knowledge of some analytical methods used in Earth sciences, introduction to data interpretation, writing of a scientific report. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Introduction to analytical geochemistry and atom physics, notably: - X-ray diffraction (XRD), - X-ray fluorescence analysis (XRF), - Electron Probe Microanalyzer (EPMA), - Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS), - Mass spectroscopy for light isotopes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Short handouts for each analytical method. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4117-00L | Sediment Analysis Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L). | W+ | 3 credits | 2G | M. G. Fellin, A. Gilli, V. Picotti | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Theoretical background and application of some basic methods for sediment analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The main goal is to learn how to apply the analysis of the texture and grain-size of sediments to constrain the sedimentary processes and environments. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | A one-day fieldtrip to a local outcrop to learn how to describe sediments in the field and to collect samples for grain-size and compositional analysis. Application of the same analytical techniques on samples of unknown origin: the sampling sites will be revealed at the end of the course. Discussion of the theoretical background and of the results in class. At the end of the course, the student will have to hand in a report with the presentation and discussion of all the data produced during the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | For the various analytical methods English texts will be provided in class. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Introduction to clastic sedimentology. R.J. Cheel, Brock University | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-0046-00L | Electron Microscopy Course (SEM and EPMA) | W+ | 3 credits | 3G | J. Allaz, L. Grafulha Morales | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Theory and lab demo of scanning electron microscope (SEM) and electron microprobe analysis (EPMA) applied to geological materials: introduction to the instruments, interaction of electron with matter, electron imaging (SE, BSE, CL), electron backscatter diffraction (EBSD), X-ray analysis for the chemical characterisation of solid material at the micron-scale. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Understand how the instrument works, why it is used, and how the different signals are being generated and analysed. Ability to treat and to present analytical results, such as calculating a mineral formula from a mineral analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Physical principles of electron microscopy: electron optics, interaction of electrons with matter, production of X-rays, interaction of X-rays with matter, X-rays detection and analysis. The second part of the course includes several demonstrations on various SEMs (at ERDW and ScopeM) and one EPMA at DERDW. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Script will be provided, along with copies of the course presentations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | [HIGHLY recommended] - Goldstein, J.I. et al., (2003, third ed.): Scanning Electron Microscopy and X-Ray Microanalysis. https://link.springer.com/book/10.1007/978-1-4615-0215-9 [Additional references] - Reed, S.J.B. (2005, second ed.): Electron Microprobe Analysis and Scanning Electron Microscopy in Geology. - Reed S.J.B. (1993, second ed.): Electron Microprobe Analysis - Anderson, C.A. (1973): Microprobe Analysis. Wiley & Sons, New York. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | No prerequisite required beside basic knowledge of petrology and mineralogy. Attending the "Analytical Methods in Geology and Petrology" prior to this course is an advantage. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4063-00L | X-Ray Powder Diffraction | W+ | 3 credits | 2G | M. Plötze | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | In the course the students learn to measure X-ray diffraction patterns of minerals and to evaluate these using different software for qualitative and quantitative mineral composition as well as crystallographic parameters. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Upon successful completion of this course students are able to: - describe the principle of X-ray diffraction analysis - carry out a qualitative and quantitative mineralogical analysis independently, - critically assess the data, - communicate the results in a scientific report. The competencies of system understanding, concept development, and measurement methods are taught and examined. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Fundamental principles of X-ray diffraction Setup and operation of X-ray diffractometers Interpretation of powder diffraction data Qualitative and quantitative phase analysis of crystalline powders (e.g. with Rietveld analysis) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Selected handouts will be made available in the lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | BRINDLEY G.W. and BROWN G. (ed) Crystal structures of clay minerals and their X-ray identification. London : Mineralogical Society monograph no. 5 (1984) (Link) DINNEBIER, R.E. et al.: Powder Diffraction. Royal Society of Chemistry, Cambridge, 2008. (http://pubs.rsc.org/en/Content/eBook/978-0-85404-231-9) PECHARSKY, V.K. and ZAVALIJ, P.Y: Fundamentals of Powder Diffraction and Structural Characterization of Materials. Springer, 2009. (https://link.springer.com/book/10.1007/978-0-387-09579-0?page=2#toc) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The course includes a high portion of practical exercises in sample preparation as well as measurement and evaluation of X-ray powder diffraction data. Own sample will be analysed qualitatively and quantitatively. Knowledge in mineralogy of this system is essential. Software will be provided for future use on own Laptop. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Restricted Choice Modules Geology A minimum of two restricted choice modules must be completed for the major Geology. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Biogeochemistry | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Biogeochemistry: Compulsory Courses The compulsory courses of the module take place in spring semester. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Biogeochemistry: Courses of Choice | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4043-00L | Sedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L). | W | 3 credits | 2G | V. Picotti, A. Gilli, H. Stoll, H. Zhang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course will focus on biological amd chemical aspects of sedimentation in marine environments. Marine sedimentation will be traced from coast to deep-sea. The use of stable isotopes palaeoceanography will be discussed. Neritic, hemipelagic and pelagic sediments will be used as proxies for environmental change during times of major perturbations of climate and oceanography. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | -You will understand chemistry and biology of the marine carbonate system -You will be able to relate carbonate mineralogy with facies and environmental conditions -You will be familiar with cool-water and warm-water carbonates -You will see carbonate and organic-carbon rich sediments as part of the global carbon cycle -You will be able to recognize links between climate and marine carbonate systems (e.g. acidification of oceans and reef growth) -You will be able to use geological archives as source of information on global change -You will have an overview of marine sedimentation through time | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | -carbonates,: chemistry, mineralogy, biology -carbonate sedimentation from the shelf to the deep sea -carbonate facies -cool-water and warm-water carbonates -organic-carbon and black shales -C-cycle, carbonates, Corg : CO2 sources and sink -Carbonates: their geochemical proxies for environmental change: stable isotopes, Mg/Ca, Sr -marine sediments thorugh geological time -carbonates and evaporites -lacustrine carbonates -economic aspects of limestone | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | no script. scientific articles will be distributed during the course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | We will read and critically discuss scientific articles relevant for "biological and chemical processes in marine and lacustrine systems" | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The grading of students is based on in-class exercises and end-semester examination. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4057-00L | Climate History and Palaeoclimatology | W | 4 credits | 2G | H. Stoll, H. Zhang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Climate history and paleoclimatology explores how the major features of the earth's climate system have varied in the past, and the driving forces and feedbacks for these changes. The major topics include the earth's CO2 concentration and mean temperature, the size and stability of ice sheets and sea level, the amount and distribution of precipitation, and the ocean heat transport. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The student will be able to describe the natural factors lead to variations in the earth's mean temperature, the growth and retreat of ice sheets, and variations in ocean and atmospheric circulation patterns, including feedback processes. Students will be able to interpret evidence of past climate changes from the main climate indicators or proxies recovered in geological records. Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitudes and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate changes over the next century to millennia. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course spans 5 thematic modules: 1. Cyclic variation in the earth's orbit and the rise and demise of ice sheets. Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? How stable or fragile is the ocean heat conveyor, past and present? 2. Feedbacks on climate cycles from CO2 and methane. What drives CO2 and methane variations over glacial cycles? What are the feedbacks with ocean circulation and the terrestrial biosphere? 3. Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in global monsoon systems? 4. Century-scale droughts and civil catastrophes. Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations? 5. How sensitive is Earth's long term climate to CO2 and cloud feedbacks? What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years? The weekly two hour lecture periods will feature lecture on these themes interspersed with short interactive tasks to apply new knowledge. Over the semester, student teams will each present in class one debate based on two scientific articles of contrasting interpretations. With flexible scheduling, students will participate in a laboratory activity to generate a new paleoclimate record from stalagmites. Student teams will be supported by an individual tutorial meeting to assist in debate preparation and another to assist in the interpretation of the lab activity data. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Palaeoclimatology | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Palaeoclimatology: Compulsory Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4057-00L | Climate History and Palaeoclimatology | W+ | 4 credits | 2G | H. Stoll, H. Zhang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Climate history and paleoclimatology explores how the major features of the earth's climate system have varied in the past, and the driving forces and feedbacks for these changes. The major topics include the earth's CO2 concentration and mean temperature, the size and stability of ice sheets and sea level, the amount and distribution of precipitation, and the ocean heat transport. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The student will be able to describe the natural factors lead to variations in the earth's mean temperature, the growth and retreat of ice sheets, and variations in ocean and atmospheric circulation patterns, including feedback processes. Students will be able to interpret evidence of past climate changes from the main climate indicators or proxies recovered in geological records. Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitudes and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate changes over the next century to millennia. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course spans 5 thematic modules: 1. Cyclic variation in the earth's orbit and the rise and demise of ice sheets. Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? How stable or fragile is the ocean heat conveyor, past and present? 2. Feedbacks on climate cycles from CO2 and methane. What drives CO2 and methane variations over glacial cycles? What are the feedbacks with ocean circulation and the terrestrial biosphere? 3. Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in global monsoon systems? 4. Century-scale droughts and civil catastrophes. Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations? 5. How sensitive is Earth's long term climate to CO2 and cloud feedbacks? What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years? The weekly two hour lecture periods will feature lecture on these themes interspersed with short interactive tasks to apply new knowledge. Over the semester, student teams will each present in class one debate based on two scientific articles of contrasting interpretations. With flexible scheduling, students will participate in a laboratory activity to generate a new paleoclimate record from stalagmites. Student teams will be supported by an individual tutorial meeting to assist in debate preparation and another to assist in the interpretation of the lab activity data. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Palaeoclimatology: Courses of Choice | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4043-00L | Sedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L). | W | 3 credits | 2G | V. Picotti, A. Gilli, H. Stoll, H. Zhang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course will focus on biological amd chemical aspects of sedimentation in marine environments. Marine sedimentation will be traced from coast to deep-sea. The use of stable isotopes palaeoceanography will be discussed. Neritic, hemipelagic and pelagic sediments will be used as proxies for environmental change during times of major perturbations of climate and oceanography. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | -You will understand chemistry and biology of the marine carbonate system -You will be able to relate carbonate mineralogy with facies and environmental conditions -You will be familiar with cool-water and warm-water carbonates -You will see carbonate and organic-carbon rich sediments as part of the global carbon cycle -You will be able to recognize links between climate and marine carbonate systems (e.g. acidification of oceans and reef growth) -You will be able to use geological archives as source of information on global change -You will have an overview of marine sedimentation through time | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | -carbonates,: chemistry, mineralogy, biology -carbonate sedimentation from the shelf to the deep sea -carbonate facies -cool-water and warm-water carbonates -organic-carbon and black shales -C-cycle, carbonates, Corg : CO2 sources and sink -Carbonates: their geochemical proxies for environmental change: stable isotopes, Mg/Ca, Sr -marine sediments thorugh geological time -carbonates and evaporites -lacustrine carbonates -economic aspects of limestone | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | no script. scientific articles will be distributed during the course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | We will read and critically discuss scientific articles relevant for "biological and chemical processes in marine and lacustrine systems" | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The grading of students is based on in-class exercises and end-semester examination. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sedimentology | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sedimentology: Compulsory Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4041-00L | Sedimentology I: Physical Processes and Sedimentary Systems | W+ | 3 credits | 2G | V. Picotti | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Sediments preserved a record of past landscapes. This courses focuses on understanding the processes that modify sedimentary landscapes with time and how we can read this changes in the sedimentary record. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The students learn basic concepts of modern sedimentology and stratigraphy in the context of sequence stratigraphy and sea level change. They discuss the advantages and pitfalls of the method and look beyond. In particular we pay attention to introducing the importance of considering entire sediment routing systems and understanding their functionning. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Details on the program will be handed out during the first lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | The sedimentary record of sea-level change Angela Coe, the Open University. Cambridge University Press | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The grading of students is based on in-class exercises and end-semester examination. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4043-00L | Sedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L). | W+ | 3 credits | 2G | V. Picotti, A. Gilli, H. Stoll, H. Zhang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course will focus on biological amd chemical aspects of sedimentation in marine environments. Marine sedimentation will be traced from coast to deep-sea. The use of stable isotopes palaeoceanography will be discussed. Neritic, hemipelagic and pelagic sediments will be used as proxies for environmental change during times of major perturbations of climate and oceanography. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | -You will understand chemistry and biology of the marine carbonate system -You will be able to relate carbonate mineralogy with facies and environmental conditions -You will be familiar with cool-water and warm-water carbonates -You will see carbonate and organic-carbon rich sediments as part of the global carbon cycle -You will be able to recognize links between climate and marine carbonate systems (e.g. acidification of oceans and reef growth) -You will be able to use geological archives as source of information on global change -You will have an overview of marine sedimentation through time | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | -carbonates,: chemistry, mineralogy, biology -carbonate sedimentation from the shelf to the deep sea -carbonate facies -cool-water and warm-water carbonates -organic-carbon and black shales -C-cycle, carbonates, Corg : CO2 sources and sink -Carbonates: their geochemical proxies for environmental change: stable isotopes, Mg/Ca, Sr -marine sediments thorugh geological time -carbonates and evaporites -lacustrine carbonates -economic aspects of limestone | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | no script. scientific articles will be distributed during the course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | We will read and critically discuss scientific articles relevant for "biological and chemical processes in marine and lacustrine systems" | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The grading of students is based on in-class exercises and end-semester examination. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sedimentology: Courses of Choice | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4901-00L | Quaternary Dating Methods | W | 2 credits | 1G | I. Hajdas, M. Christl | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Reconstruction of time scales is critical for all Quaternary studies in Geology and Archeology. Various methods are applied depending on the time range of interest and the archive studied. In this lecture, we focus on the last 50 ka and the methods that are most frequently used for dating Quaternary sediments and landforms in this time range. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students will be made familiar with the details of the six dating methods through lectures on basic principles, analysis of case studies, solving of problem sets for age calculation and visits to dating laboratories. At the end of the course, students will: 1. understand the fundamental principles of the most frequently used dating methods for Quaternary studies. 2. choose which dating method (or combination of methods) suits a certain field problem. 3. critically read and evaluate the application of dating methods in scientific publications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Introduction: Isotopes and decay 2. Radiocarbon dating: principles and applications 3. AMS technique and its application in Quaternary geochronology 4. U-series disequilibrium dating 5. Luminescence dating 6. Introduction to incremental: varve counting, dendrochronology, and ice cores chronologies 7. Dating anthropogenic records | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Visit to radiocarbon lab, cosmogenic nuclide lab, and accelerator (AMS) facility. Required: attending the lecture, visiting laboratories, handing back solutions for problem sets, short presentations or written report Optional (individual): 1-5 days of hands-on radiocarbon dating at the 14C lab, ETH Hoenggerberg | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4063-00L | X-Ray Powder Diffraction | W | 3 credits | 2G | M. Plötze | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | In the course the students learn to measure X-ray diffraction patterns of minerals and to evaluate these using different software for qualitative and quantitative mineral composition as well as crystallographic parameters. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Upon successful completion of this course students are able to: - describe the principle of X-ray diffraction analysis - carry out a qualitative and quantitative mineralogical analysis independently, - critically assess the data, - communicate the results in a scientific report. The competencies of system understanding, concept development, and measurement methods are taught and examined. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Fundamental principles of X-ray diffraction Setup and operation of X-ray diffractometers Interpretation of powder diffraction data Qualitative and quantitative phase analysis of crystalline powders (e.g. with Rietveld analysis) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Selected handouts will be made available in the lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | BRINDLEY G.W. and BROWN G. (ed) Crystal structures of clay minerals and their X-ray identification. London : Mineralogical Society monograph no. 5 (1984) (Link) DINNEBIER, R.E. et al.: Powder Diffraction. Royal Society of Chemistry, Cambridge, 2008. (http://pubs.rsc.org/en/Content/eBook/978-0-85404-231-9) PECHARSKY, V.K. and ZAVALIJ, P.Y: Fundamentals of Powder Diffraction and Structural Characterization of Materials. Springer, 2009. (https://link.springer.com/book/10.1007/978-0-387-09579-0?page=2#toc) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The course includes a high portion of practical exercises in sample preparation as well as measurement and evaluation of X-ray powder diffraction data. Own sample will be analysed qualitatively and quantitatively. Knowledge in mineralogy of this system is essential. Software will be provided for future use on own Laptop. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4341-00L | Source to Sink Sedimentary Systems | W | 3 credits | 2G | T. I. Eglinton, J. Hemingway, L. Bröder, M. Griepentrog | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The transfer and redistribution of mass and chemical elements at the Earth’s surface is controlled by a wide range of processes that will affect the magnitude and nature of fluxes exported from continental fluvial systems. This course addresses the production, transport, and deposition of sediments from source to sink and their interaction with biogeochemical cycles. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This course aims at integrating different earth science disciplines (geomorphology, geochemistry, and tectonics) to gain a better understanding of the physical and biogeochemical processes at work across the sediment production, routing, and depositional systems. It will provide insight into how it is actually possible to “see a world in a grain of sand” by taking into account the cascade of physical and chemical processes that shaped and modified sediments and chemical elements from their source to their sink. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Lectures will introduce the main source to sink concepts and cover physical and biogeochemical processes in upland, sediment producing areas (glacial and periglacial processes; mass movements; hillslopes and soil processes/development; critical zone biogeochemical processes). Field excursion (3 days, 30 September -2 October 2022): will cover the upper Rhône from the Rhône glacier to the Rhône delta in Lake Geneva) as small scale source-to-sink system. Practicals comprise (I) a small autonomous project on the Rhône catchment based on samples collected during the field trip and (II) an independent report on how you would design, build, and implement your own source-to-sink study. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes are provided online during the course. They summarize the current subjects week by week and provide the essential theoretical background. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Suggested references : - "Sediment routing systems: the fate of sediments from Source to Sink" by Philip A. Allen (Cambridge University Press) - "Principles of soilscape and landscape evolution by Garry Willgoose" (Cambridge University Press) - "Geomorphology, the mechanics and chemistry of landscapes" by Robert S. Anderson & Suzanne P. Anderson (Cambridge University Press) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4243-00L | Seismic Stratigraphy and Facies | W | 2 credits | 3G | G. Eberli | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course teaches the techniques of seismic interpretation for solving geological and environmental problems. A special focus is given to the seismic facies analysis and seismic sequence stratigraphy of different depositional systems. In addition, examples are presented how seismic data can be integrated into research projects in basin analysis, paleoceanography and paleoclimatology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | 1. Acquire techniques for a comprehensive interpretation of seismic sections for solving geologic, stratigraphic and environmental problems 2. Correlation of seismic facies and seismic attributes to lithologic facies in different sedimentary systems 3. Learn the principles and techniques of seismic sequence stratigraphy and the differences between lithostratigraphy and sequence stratigraphy 4. Learn to integrate seismic data into paleoceonagraphic and paleoclimatic research. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The four day course consists of lectures that are accompanied by a variety of exercises. Day 1: Introduction seismic facies analysis with exercise Seismic resolution Seismic facies of contourite drift systems and their value as physical indicators of global current changes. Day 2: Seismic attributes and seismic geomorphology Siliciclastic deltas, shelves and turbidite systems, 2D-3D Exercise: Seismic section Tarragon Basin and reconstructing the basin evolution with respect to the climate conditions at the end of the Miocene. Seismic facies carbonate systems Carbonates as recorders of sea level and paleoclimate Deepwater environments, including cold-water coral habitats Day 3: Carbonates versus volcanic seismic facies Introduction seismic attributes Faults and structures on seismic sections Seismic facies of mixed systems with Exercises from Canada and the Paradox Basin Day 4: Sea level and sedimentation Telling ages on seismic section Seismic stratigraphy and sequence stratigraphy Exercise: Sequence analysis Straits of Andros Final discussion | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | An original script (110 pages) designed for the class will be distributed at the beginning of the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Books Seismic Interpretation of Depositional Systems: Ariztegui, D. and Wildi, W. (eds.), 2003, Lake Systems from Ice Age to Industrial Time. Eclogae Geologicae Helvetiae Special Issue, v. 96, S1-S133. Bacon, M., Simm, R. and Redshaw, T., 2003, 3-D Seismic Interpretation. Cambridge University Press, 112 pp. Chopra, S., and K. J. Marfurt, 2007, Seismic attributes for prospect identification and reservoir characterization. SEG Geophysical Development Series, pp 481. Davies, R.J., Posementier, H.W., Wood, L.J., and Cartwright, J.A. (eds.), 2007, Seismic Geomorphology. Geological Society Special Publication 277, pp274. Eberli, G.P., Massaferro, J.L., and Sarg, J.F. (eds.), 2004, Seismic Imaging of Carbonate Reservoirs and Systems. AAPG Memoir 81. Rebesco, M. & Camerlenghi, A., 2008, Contourites. Developments in Sedimentology 60, Elsevier.Weimer, P. and Davis, T.L. (eds.), 1996, Applications of 3-D seismic data to exploration and production. AAPG Studies in Geology, No. 42 and SEG Geophysical Development Series, No. 5., pp. 270. Gupta, S. and Cowie, P. (eds). 2000, Controls in the Stratigraphic Development of Extensional Basins. Basin Research Special Issue, v. 12, 445pp Harris, P.M., Saller, A.H., and Simo, J.A. (eds.), 1999, Advances in carbonate sequence stratigraphy: application to reservoirs, outcrops, and models. SEPM Special Publication v. 63. Payton, C.E., (ed.), 1977, Seismic stratigraphy-applications to hydrocarbon exploration. AAPG Memoir 26, 516pp. Van Wagoner, J.C., R.M. Mitchum, K.M. Campion, and V.D. Rahmanian, 1990, Siliciclastic sequence stratigraphy in well logs, cores, and outcrops. AAPG Methods in Exploration Series, No. 7, 55pp. Weimer, P. and Posamentier, H.W., 1993, Siliciclastic Sequence Stratigraphy: Recent Developments and Applications. AAPG Memoir 58. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Basic knowledge in sedimentology and stratigraphy | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Structural Geology | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Structural Geology: Compulsory Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4132-00L | Field Course IV: Alpine Field Course Priority is given to D-ERDW students. If space is available UZH Geography and Earth System Sciences students may attend this field course at full cost. No registration through myStudies. The registration for excursions and field courses goes through http://exkursionen.erdw.ethz.ch only. | W+ | 3 credits | 6P | W. Behr, V. Picotti | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Students who want to participate hand in a short motivation letter (max. 1 page A4). The final selection will be based on this motivation letter. Deadline for motivation letter: 31 October 2018 Final decision 20 November 2018 Students registering for the course confirm having read and accepted the terms and conditions for excursions and field courses of D-ERDW Link | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Structural Geology: Courses of Choice | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4111-00L | Experimental Rock Physics and Deformation | W | 3 credits | 2G | L. Tokle, C. Madonna, A. S. Zappone | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | We illustrate some physical properties, deformation mechanisms, and define flow laws. We show the fundamental techniques for the measurement in laboratory of density, permeability, elastic properties and deformation. We presented actual case studies and discuss upscaling from laboratory to field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The objective of this course is to introduce rock physics and rock deformation, and discuss the aid of laboratory tests to interpretation at large scale . Rock Physics provides the understanding to connect geomechanical and geophysical data to the intrinsic properties of rocks, such as mineral composition and texture. Rock Physics is a key component in geo-resources exploration and exploitation, and in geo-hazard assessment. For rock deformation we will illustrate how to determined flow-laws of rocks from experiments and how to extrapolate to natural conditions. Since the time scale of laboratory experiments is several orders of magnitude faster than nature, we will compare the microstructure of natural rocks with that produced during the experiments to prove that the same mechanisms are operating. For this purpose, the fundamental techniques of experimental rock deformation will be illustrated and test on natural rock samples in the plastic deformation regime (high temperature) as well in the brittle regime ( room temperature) will be presented. We will perform tests in the lab, to acquire the data, to correct for calibration and to process the data and finally to interpret the data. The course is at Master student level, but will be useful for PhDs students who want to begin to work in experimental deformation or who want to know the meaning and the limitation of laboratory flow-laws for geodynamic modelling | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course will focus on research-based term project, lectures will alternate with laboratory demonstrations. We will illustrate how intrinsic properties of rocks (mineral composition, porosity, pore fluids, crystallographic orientation, microstructures) are connected to the following physical properties: - permeability; - elastic properties for seismic interpretations; - anisotropy of the above physical properties. We will measure some of those parameters in laboratory and discuss real case studies and applications. Principles of deformation mechanisms, flow laws, and deformation mechanism maps will be presented in lectures. In laboratory we will show: - Experimental deformation rigs (gas, fluid and solid confining media); - Main part of the apparatus (mechanical, hydraulic, heating system, data logging); - Calibration of an apparatus (distortion of the rig; transducers calibration); - Various types of tests (axial deformation; diagonal cut and torsion; deformation; constant strain rate tests; creep tests; stepping tests); | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The course of Structural Geology (651-3422-00L) is highly recommended before attending this course. Moreover the students should have basic knowledge in geophysics and mineralogy/crystallography. In doubt, please contact the course responsible beforehand. |
- Page 1 of 7 All