Search result: Catalogue data in Spring Semester 2023

Physics Master Information
Electives
Electives: Physics and Mathematics
Selection: Solid State Physics
NumberTitleTypeECTSHoursLecturers
402-0536-00LFerromagnetism: From Thin Films to Spintronics
Does not take place this semester.
Special Students UZH must book the module PHY434 directly at UZH.
W6 credits3Gto be announced
AbstractThis course extends the introductory course "Introduction to Magnetism" to the latest, modern topics in research in magnetism and spintronics.
After a short revisit of the basic magnetism concepts, emphasis is put on novel phenomena in (ultra)thin films and small magnetic structures, displaying effects not encountered in bulk magnetism.
ObjectiveKnowing the most important concepts and applications of ferromagnetism, in particular on the nanoscale (thin films, small structures). Being able to read and understand scientific articles at the front of research in this area. Learn to know how and why magnetic storage, sensors, memories and logic concepts function. Learn to condense and present the results of a research articles so that colleagues understand.
ContentMagnetization curves, magnetic domains, magnetic anisotropy; novel effects in ultrathin magnetic films and multilayers: interlayer exchange, spin transport; magnetization dynamics, spin precession.
Applications: Magnetic data storage, magnetic memories, spin-based electronics, also called spintronics.
Lecture notesLecture notes will be handed out (in English).
Prerequisites / NoticeThis course can be easily followed also without having attended the "Introduction to Magnetism" course.
Language: English.
402-0318-00LSemiconductor Materials: Characterization, Processing and DevicesW6 credits2V + 1US. Schön, W. Wegscheider
AbstractThis course gives an introduction into the fundamentals of semiconductor materials. The main focus in this semester is on state-of-the-art characterization, semiconductor processing and devices.
ObjectiveBasic knowledge of semiconductor physics and technology. Application of this knowledge for state-of-the-art semiconductor device processing
Content1. Material characterization: structural and chemical methods
1.1 X-ray diffraction methods (Powder diffraction, HRXRD, XRR, RSM)
1.2 Electron microscopy Methods (SEM, EDX, TEM, STEM, EELS)
1.3 SIMS, RBS
2. Material characterization: electronic methods
2.1 van der Pauw techniquel2.2 Floating zone method
2.2 Hall effect
2.3 Cyclotron resonance spectroscopy
2.4. Quantum Hall effect
3. Material characterization: Optical methods
3.1 Absorption methods
3.2 Photoluminescence methods
3.3 FTIR, Raman spectroscopy
4. Semiconductor processing: lithography
4.1 Optical lithography methods
4.2 Electron beam lithography
4.3 FIB lithography
4.4 Scanning probe lithography
4.5 Direct growth methods (CEO, Nanowires)
5. Semiconductor processing: structuring of layers and devices
5.1 Wet etching methods
5.2 Dry etching methods (RIE, ICP, ion milling)
5.3 Physical vapor depositon methods (thermal, e-beam, sputtering)
5.4 Chemical vapor Deposition methods (PECVD, LPCVD, ALD)
5.5 Cleanroom basics & tour
6. Semiconductor devices
6.1 Semiconductor lasers
6.2 LED & detectors
6.3 Solar cells
6.4 Transistors (FET, HBT, HEMT)
Lecture notesLink
Prerequisites / NoticeThe "compulsory performance element" of this lecture is a short presentation of a research paper complementing the lecture topics. Several topics and corresponding papers will be offered on the moodle page of this lecture.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Problem-solvingassessed
Social CompetenciesCommunicationfostered
Self-presentation and Social Influence fostered
402-0596-00LThe Physics of Quantum Dot QubitsW6 credits2V + 1UT. M. Ihn
AbstractThe lecture discusses the basic physics concepts of quantum dot charge and spin qubits from the experimental viewpoint. Among them are the Coulomb and Spin blockade, qubit manipulation techniques including elements of circuit QED, relaxation and decoherence mechanisms as well as qubit read-out techniques.
ObjectiveStudents are able to understand modern experiments in the field of quantum dot qubits. They can critically reflect published research in this field and explain it to an audience of physicists. Students know and understand the fundamental phenomena related to qubit manipulation as well as decoherence and their significance. They are able to apply their knowledge to practical experiments in a modern research lab.
Content1. Coulomb blockade and Constant Interaction Model, Excited State Spectroscopy
2. Rate equation model of state occupation and transport, resonant tunneling and co-tunneling
3. States in double quantum dots
4. Transport in double quantum dots
5. Charge qubit, Charge Noise and Phonon Relaxation
6. Spin States, Spin Blockade
7. Singlet-Triplet Qubit, Hyperfine Interaction
8. Charge detection, T1-time measurement
9. Spin-orbit interaction
10. AC excitation, Rabi oscillations
11. Landau-Zener-Tunneling, Landau-Zener Interference
12. Types of T2-times and their measurement
13. Qubit-Photon Coupling, Elements of Circuit QED
14. Qubit Implementations in Different Materials
Lecture notesParts of the lecture are based on the book:
T. Ihn, Semiconductor Nanostructures: Quantum States and Electronic Transport, ISBN 978-0-19-953442-5, Oxford University Press, 2010.
Prerequisites / NoticeA solid basis in quantum mechanics, electrostatics, quantum statistics and in solid state physics is required. Having passed the lecture Semiconductor Nanostructures (fall semester) may be advantageous, but is not required.

Students of the Master in Micro- and Nanosystems should at least have attended the lecture by David Norris, Introduction to quantum mechanics for engineers. They should also have passed the exam of the lecture Semiconductor Nanostructures.
402-0528-12LUltrafast Methods in Solid State PhysicsW6 credits2V + 1US. Johnson, Y. Deng, M. Savoini
AbstractIn condensed matter physics, “ultrafast” refers to dynamics on the picosecond and femtosecond time scales, the time scales where atoms vibrate and electronic spins flip. Measuring real-time dynamics on these time scales is key to understanding materials in nonequilibrium states. This course offers an overview and understanding of the methods used to accomplish this in modern research laboratories.
ObjectiveThe goal of the course is to enable students to identify and evaluate experimental methods to manipulate and measure the electronic, magnetic and structural properties of solids on the fastest possible time scales. This offers new fundamental insights on the couplings that bind solid-state systems together. It also opens the door to new technological applications in data storage and processing involving metastable states that can be reached only by driving systems far from equilibrium. This course offers an overview of ultrafast methods as applied to condensed matter physics. Students will learn which methods are appropriate for studying relevant scientific questions, and will be able to describe their relative advantages and limitations.
ContentThe topical course outline is as follows:

Chapter 1: Introduction

- Important time scales for dynamics in solids and their applications
- Time-domain versus frequency-domain experiments
- The pump-probe technique: general advantages and limits

Chapter 2: Overview of ultrafast processes in solids

- Carrier dynamics in response to ultrafast laser interactions
- Dynamics of the lattice: coherent vs. incoherent phonons
- Ultrafast magnetic phenomena

Chapter 3: Ultrafast optical-frequency methods

- Ultrafast laser sources (oscillators and amplifiers)
- Generating broadband pulses
- Second and third order harmonic generation
- Optical parametric amplification
- Fluorescence spectroscopy
- Advanced optical pump-probe techniques

Chapter 4: THz- and mid-infrared frequency methods

- Low frequency interactions with solids
- Difference frequency mixing
- Optical rectification
- Time-domain spectroscopy

Chapter 5: VUV and x-ray frequency methods

- Synchrotron based sources
- Free electron lasers
- High-harmonic generation
- X-ray diffraction
- Time-resolved X-ray microscopy & coherent imaging
- Time-resolved core-level spectroscopies

Chapter 6: Time-resolved electron methods

- Ultrafast electron diffraction
- Time-resolved electron microscopy
Lecture notesWill be distributed via moodle.
LiteratureWill be distributed via moodle.
Prerequisites / NoticeAlthough the course "Ultrafast Processes in Solids" (402-0526-00L) is useful as a companion to this course, it is not a prerequisite.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationassessed
Cooperation and Teamworkfostered
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingfostered
Critical Thinkingfostered
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
402-0532-00LQuantum Solid State Magnetism
Does not take place this semester.
W6 credits2V + 1U
AbstractThis course is based on the principal modern tools used to study collective magnetic phenomena in the Solid State, namely correlation and response functions. It is quite quantitative, but doesn't contain any "fancy" mathematics. Instead, the theoretical aspects are balanced by numerous experimental examples and case studies. It is aimed at theorists and experimentalists alike.
ObjectiveLearn the modern theoretical foundations and "language", as well as principles and capabilities of the latest experimental techniques, used to describe and study collective magnetic phenomena in the Solid State.
Content- Magnetic response and correlation functions. Analytic properties. Fluctuation-dissipation theorem. Experimental methods to measure static and dynamic correlations.

- Magnetic response and correlations in metals. Diamagnetism and paramagnetism. Magnetic ground states: ferromagnetism, spin density waves. Excitations in metals, spin waves. Experimental examples.

- Magnetic response and correlations of magnetic ions in crystals: quantum numbers and effective Hamiltonians. Application of group theory to classifying ionic states. Experimental case studies.

- Magnetic response and correlations in magnetic insulators. Effective Hamiltonians. Magnetic order and propagation vector formalism. The use of group theory to classify magnetic structures. Determination of magnetic structures from diffraction data. Excitations: spin wave theory and beyond. "Triplons". Measuring spin wave spectra.
Lecture notesA comprehensive textbook-like script is provided.
LiteratureIn principle, the script is suffient as study material. Additional reading:

-"Magnetism in Condensed Matter" by S. Blundell
-"Quantum Theory of Magnetism: Magnetic properties of Materials" by R. M. White
-"Lecture notes on Electron Correlations and Magnetism" by P. Fazekas
Prerequisites / NoticePrerequisite:
402-0861-00L Statistical Physics
402-0501-00L Solid State Physics

Not prerequisite, but a good companion course:
402-0871-00L Solid State Theory
402-0257-00L Advanced Solid State Physics
402-0535-00L Introduction to Magnetism
327-2130-00LIntroducing Photons, Neutrons and Muons for Materials Characterisation Restricted registration - show details W2 credits3GA. Hrabec
AbstractThe course takes place at the campus of the Paul Scherrer Institute. The program consists of introductory lectures on the use of photons, neutrons and muons for materials characterization, as well as tours of the large scale facilities of PSI.
ObjectiveThe aim of the course is that the students acquire a basic understanding on the interaction of photons, neutrons and muons with matter and how one can use these as tools to solve specific problems.
ContentThe course runs for one week in June (19th to 23rd). It takes place at the campus of the Paul Scherrer Institute. The morning consists of introductory lectures on the use of photons, neutrons and muons for materials characterization. In the afternoon tours of the large scale facilities of PSI (Swiss Light Source, Swiss Spallation Neutron Source, Swiss Muon Source, Swiss Free Electron Laser), are foreseen, as well as in-depth visits to some of the instruments. At the end of the week, the students are required to give an oral presentation about a scientific topic involving the techniques discussed. Time for the presentation preparations will be allocated in the afternoon.

• Interaction of photons, neutrons and muons with matter
• Production of photons, neutrons and muons
• Experimental setups: optics and detectors
• Crystal symmetry, Bragg’s law, reciprocal lattice, structure factors
• Elastic and inelastic scattering with neutrons and photons
• X-ray absorption spectroscopy, x-ray magnetic circular dichroism
• Polarized neutron scattering for the study of magnetic materials
• Imaging techniques using x-rays and neutrons
• Introduction to muon spin rotation
• Applications of muon spin rotation
Lecture notesSlides from the lectures will be available on the internet prior to the lectures.
Literature• Philip Willmott: An Introduction to Synchrotron Radiation: Techniques and Applications, Wiley, 2011
• J. Als-Nielsen and D. McMorrow: Elements of Modern X-Ray Physics, Wiley, 2011.
• G.L. Squires, Introduction to the Theory of Thermal Neutron Scattering, Dover Publications (1997).
• Muon Spin Rotation, Relaxation, and Resonance, Applications to Condensed Matter"
Alain Yaouanc and Pierre Dalmas de Réotier, Oxford University Press, ISBN: 9780199596478
• “Physics with Muons: from Atomic Physics to Condensed Matter Physics”, A. Amato
Link
Prerequisites / NoticeThis is a block course for students who have attended courses on condensed matter or materials physics.

Registration at PSI website (Link) required by March 19, 2023.
402-0533-00LQuantum Acoustics and Optomechanics
Does not take place this semester.
W6 credits2V + 1UY. Chu
AbstractThis course gives an introduction to the interaction of mechanical motion with electromagnetic fields in the quantum regime. There are parallels between the quantum descriptions of mechanical resonators, electrical circuits, and light, but each system also has its own unique properties. We will explore how interfacing them can be useful for technological applications and fundamental science.
ObjectiveThe course aims to prepare students for performing theoretical and/or experimental research in the fields of quantum acoustics and optomechanics. For example, after this course, students should be able to:
- understand and explain current research literature in quantum acoustics and optomechanics
- predict and simulate the behavior of mechanical quantum systems using tools such as the QuTiP package in Python
- apply concepts discussed in the class toward designing devices and experiments
ContentThe focus of this course will be on the properties of and interactions between mechanical and electromagnetic systems in the context of quantum information and technologies. We will only briefly touch upon precision measurement and sensing with optomechanics since it is the topic of another course (227-0653-00L). Some topics that will be covered are:
- Mechanical motion and acoustics in solid state materials
- Quantum description of motion, electrical circuits, and light.
- Different models for quantum interactions: optomechanical, Jaynes-Cummings, etc.
- Mechanisms for mechanical coupling to electromagnetic fields: piezoelectricity, electrostriction, radiation pressure, etc.
- Coherent interactions vs. dissipative processes: phenomenon and applications in different regimes.
- State-of the art electromechanical and optomechanical systems.
Lecture notesNotes will be provided for each lecture.
LiteratureParts of books and research papers will be used.
Prerequisites / NoticeBasic knowledge of quantum mechanics is required.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingfostered
Media and Digital Technologiesassessed
Problem-solvingassessed
Project Managementassessed
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityassessed
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection assessed
Self-direction and Self-management assessed
402-0532-50LQuantum Solid State Magnetism IIW6 credits2V + 1UM. Zhu
AbstractThis course covers the modern developments and problems in the field of solid state magnetism. It has the special emphasis on the phenomena that go beyond semiclassical approximation, such as quantum paramagnets, spin liquids and magnetic frustration. The course is aimed at both the experimentalists and theorists, and the theoretical concepts are balanced by the experimental data.
ObjectiveLearn the modern approach to the complex magnetic phases of matter and the transitions between them. A number of theoretical approaches that go beyond the linear spin wave theory will be discussed during the course, and an overview of the experimental status quo will be given.
Content- Phase transitions in the magnetic matter. Classical and quantum criticality. Consequences of broken symmetries for the spectral properties. Absence of order in the low-dimensional systems. Berezinskii-Kosterlitz-Thouless transition and its relevance to “layered” magnets.

- Failures of linear spin wave theory. Spin wave decays. Antiferromagnets as bosonic systems. Gapped “quantum paramagnets” and their phase diagrams. Extended spin wave theory. Magnetic “Bose-Einstein condensation”.

- Spin systems in one dimension: XY, Ising and Heisenberg model. Lieb-Schultz-Mattis theorem. Tomonaga-Luttinger liquid description of the XXZ spin chains. Spin ladders and Haldane chains. Critical points in one dimension and generalized phase diagram.

- Effects of disorder in magnets. Harris criterion. “Spin islands” in depleted gapped magnets.

- Introduction into magnetic frustration. Order-from-disorder phenomena and triangular lattice in the magnetic field. Frustrated chain and frustrated square lattice models. Exotic magnetic states in two dimensions.
Lecture notesA comprehensive textbook-like script is provided.
LiteratureIn principle, the script is sufficient as study material. Additional reading:

-"Interacting Electrons and Quantum Magnetism" by A. Auerbach
-"Basic Aspects of The Quantum Theory of Solids " by D. Khomskii
-"Quantum Physics in One Dimension" by T. Giamarchi
-"Quantum Theory of Magnetism: Magnetic properties of Materials" by R. M. White
-"Frustrated Spin Systems" ed. H. T. Diep
Prerequisites / NoticePrerequisite:
402-0861-00L Statistical Physics
402-0501-00L Solid State Physics


Not prerequisite, but a good companion course:
402-0871-00L Solid State Theory
402-0257-00L Advanced Solid State Physics
402-0535-00L Introduction to Magnetism
402-0532-00L Quantum Solid State Magnetism I
Selection: Quantum Electronics
NumberTitleTypeECTSHoursLecturers
402-0498-00LTrapped-Ion Quantum PhysicsW6 credits2V + 1UD. Kienzler
AbstractThis course covers the physics of trapped ions at the quantum level described as harmonic oscillators coupled to spin systems, for which the 2012 Nobel prize was awarded. Trapped-ion systems have achieved an extraordinary level of control and provide leading technologies for quantum information processing and quantum metrology.
ObjectiveThe objective is to provide a basis for understanding the wide range of research currently being performed with trapped ion systems: fundamental quantum mechanics with spin-spring systems, quantum information processing and quantum metrology. During the course students would expect to gain an understanding of the current frontier of research in these areas, and the challenges which must be overcome to make further advances. This should provide a solid background for tackling recently published research in these fields, including experimental realisations of quantum information processing using trapped ions.
ContentThis course will cover trapped-ion physics. It aims to cover both theoretical and experimental aspects. In all experimental settings the role of decoherence and the quantum-classical transition is of great importance, and this will therefore form one of the key components of the course. The topics of the course were cited in the Nobel prize which was awarded to David Wineland in 2012.

Topics which will be covered include:
- Fundamental working principles of ion traps and modern trap geometries, quantum description of motion of trapped ions
- Electronic structure of atomic ions, manipulation of the electronic state, Rabi- and Ramsey-techniques, principle of an atomic clock
- Quantum description of the coupling of electronic and motional degrees of freedom
- Laser cooling
- Quantum state engineering of coherent, squeezed, cat, grid and entangled states
- Trapped ion quantum information processing basics and scaling, current challenges
- Quantum metrology with trapped ions: quantum logic spectroscopy, optical clocks, search for physics beyond the standard model using high-precision spectroscopy
LiteratureS. Haroche and J-M. Raimond "Exploring the Quantum" (recommended)
M. Scully and M.S. Zubairy, Quantum Optics (recommended)
Prerequisites / NoticeThe preceding attendance of the scheduled lecture Quantum Optics (402-0442-00L) or a comparable course is required.
402-0558-00LCrystal Optics in Intense Light FieldsW6 credits2V + 1UM. Fiebig
AbstractBecause of their aesthetic nature crystals are termed "flowers of mineral kingdom". The aesthetic aspect is closely related to the symmetry of the crystals which in turn determines their optical properties. It is the purpose of this course to stimulate the understanding of these relations with a particular focus on those phenomena occurring in intense light fields as they are provided by lasers.
ObjectiveIn this course students will at first acquire a systematic knowledge of classical crystal-optical phenomena and the experimental and theoretical tools to describe them. This will be the basis for the core part of the lecture in which they will learn how to characterize ferroelectric, (anti)ferromagnetic and other forms of ferroic order and their interaction by nonlinear optical techniques. See also Link.
ContentCrystal classes and their symmetry; basic group theory; optical properties in the absence and presence of external forces; focus on magnetooptical phenomena; density-matrix formalism of light-matter interaction; microscopy of linear and nonlinear optical susceptibilities; second harmonic generation (SHG); characterization of ferroic order by SHG; outlook towards other nonlinear optical effects: devices, ultrafast processes, etc.
Lecture notesExtensive material will be provided throughout the lecture.
Literature(1) R. R. Birss, Symmetry and Magnetism, North-Holland (1966)
(2) R. E. Newnham: Properties of Materials: Anisotropy, Symmetry, Structure, Oxford University (2005)
(3) A. K. Zvezdin, V. A. Kotov: Modern Magnetooptics & Magnetooptical Materials, Taylor/Francis (1997)
(4) Y. R. Shen: The Principles of Nonlinear Optics, Wiley (2002)
(5) K. H. Bennemann: Nonlinear Optics in Metals, Oxford University (1999)
Prerequisites / NoticeBasic knowledge in solid state physics and quantum (perturbation) theory will be very useful. The lecture is addressed to students in physics and students in materials science with an affinity to physics.
402-0466-15LQuantum Optics with Photonic Crystals, Plasmonics and MetamaterialsW6 credits2V + 1UG. Scalari, J. Faist
AbstractIn this lecture, we would like to review new developments in the emerging topic of quantum optics in very strongly confined structures, with an emphasis on sources and photon statistics as well as the coupling between optical and mechanical degrees of freedom.
ObjectiveIntegration and miniaturisation have strongly characterised fundamental research and industrial applications in the last decades, both for photonics and electronics.
The objective of this lecture is to provide insight into the most recent solid-state implementations of strong light-matter interaction, from micro and nano cavities to nano lasers and quantum optics. The content of the lecture focuses on the achievement of extremely subwavelength radiation confinement in electronic and optical resonators. Such resonant structures are then functionalized by integrating active elements to achieve devices with extremely reduced dimensions and exceptional performances. Plasmonic lasers, Purcell emitters are discussed as well as ultrastrong light matter coupling and opto-mechanical systems.
Content1. Light confinement
1.1. Photonic crystals
1.1.1. Band structure
1.1.2. Slow light and cavities
1.2. Plasmonics
1.2.1. Light confinement in metallic structures
1.2.2. Metal optics and waveguides
1.2.3. Graphene plasmonics
1.3. Metamaterials
1.3.1. Electric and magnetic response at optical frequencies
1.3.2. Negative index, cloacking, left-handness

2. Light coupling in cavities
2.1. Strong coupling
2.1.1. Polariton formation
2.1.2. Strong and ultra-strong coupling
2.2. Strong coupling in microcavities
2.2.1. Planar cavities, polariton condensation
2.3. Polariton dots
2.3.1. Microcavities
2.3.2. Photonic crystals
2.3.3. Metamaterial-based

3. Photon generation and statistics
3.1. Purcell emitters
3.1.1. Single photon sources
3.1.2. THz emitters
3.2. Microlasers
3.2.1. Plasmonic lasers: where is the limit?
3.2.2. g(1) and g(2) of microlasers
3.3. Optomecanics
3.3.1. Micro ring cavities
3.3.2. Photonic crystals
3.3.3. Superconducting resonators
402-0484-00LExperimental and Theoretical Aspects of Quantum Gases Information W6 credits2V + 1UT. U. Donner
AbstractQuantum Gases are the most precisely controlled many-body systems in physics. This provides a unique interface between theory and experiment, which allows addressing fundamental concepts and long-standing questions. This course lays the foundation for the understanding of current research in this vibrant field.
ObjectiveThe lecture conveys a basic understanding for the current research on quantum gases. Emphasis will be put on the connection between theory and experimental observation. It will enable students to read and understand publications in this field.

Part of the course are also presentations by the students on recent literature.
ContentCooling and trapping of neutral atoms

Bose and Fermi gases

Ultracold collisions

The Bose-condensed state

Elementary excitations

Vortices

Superfluidity

Supersolidity

Interference and Correlations

Optical lattices

Many-body cavity QED
Lecture notesnotes and material accompanying the lecture will be provided
LiteratureC. J. Pethick and H. Smith, Bose-Einstein condensation in dilute Gases,
Cambridge.
Proceedings of the Enrico Fermi International School of Physics, Vol. CXL,
ed. M. Inguscio, S. Stringari, and C.E. Wieman (IOS Press, Amsterdam,
1999).
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Media and Digital Technologiesfostered
Problem-solvingassessed
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Personal CompetenciesCritical Thinkingfostered
Self-direction and Self-management fostered
402-0444-00LDissipative Quantum Systems
Does not take place this semester.
W6 credits2V + 1UA. Imamoglu
AbstractThis course builds up on the material covered in the Quantum Optics course. The emphasis will be on analysis of dissipative quantum systems and quantum optics in condensed-matter systems.
ObjectiveThe course aims to provide the knowledge necessary for pursuing advanced research in the field of Quantum Optics in condensed matter systems. Fundamental concepts and techniques of Quantum Optics will be linked to experimental research in interacting photonic systems.
ContentDescription of open quantum systems using master equation and quantum trajectories. Decoherence and quantum measurements. Dicke superradiance. Dissipative phase transitions. Signatures of electron-exciton and electron-electron interactions in optical response.
Lecture notesLecture notes will be provided
LiteratureC. Cohen-Tannoudji et al., Atom-Photon-Interactions (recommended)
Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics (recommended)
A collection of review articles (will be pointed out during the lecture)
Prerequisites / NoticeMasters level quantum optics knowledge
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesfostered
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingfostered
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
402-0486-00LFrontiers of Quantum Gas Research: Few- and Many-Body Physics
Does not take place this semester.
W6 credits2V + 1U
AbstractThe lecture will discuss the most relevant recent research in the field of quantum gases. Bosonic and fermionic quantum gases with emphasis on strong interactions will be studied. The topics include low dimensional systems, optical lattices and quantum simulation, the BEC-BCS crossover and the unitary Fermi gas, transport phenomena, and quantum gases in optical cavities.
ObjectiveThe lecture is intended to convey an advanced understanding for the current research on quantum gases. Emphasis will be put on the connection between theory and experimental observation. It will enable students to follow current publications in this field.
ContentQuantum gases in one and two dimensions
Optical lattices, Hubbard physics and quantum simulation
Strongly interacting Fermions: the BEC-BCS crossover and the unitary Fermi gas
Transport phenomena in ultracold gases
Quantum gases in optical cavities
Lecture notesno script
LiteratureC. J. Pethick and H. Smith, Bose-Einstein condensation in dilute Gases, Cambridge.
T. Giamarchi, Quantum Physics in one dimension
I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80, 885 (2008)
Proceedings of the Enrico Fermi International School of Physics, Vol. CLXIV, ed. M. Inguscio, W. Ketterle, and C. Salomon (IOS Press, Amsterdam, 2007).
Additional literature will be distributed during the lecture
Prerequisites / NoticePresumably, Prof. Päivi Törmä from Aalto university in Finland will give part of the course. The exercise classes will be partly in the form of a Journal Club, in which a student presents the achievements of a recent important research paper. More information available on Link
151-0172-00LMicrosystems II: Devices and Applications Information W6 credits3V + 3UC. Hierold, C. I. Roman
AbstractThe students are introduced to the fundamentals and physics of microelectronic devices as well as to microsystems in general (MEMS). They will be able to apply this knowledge for system research and development and to assess and apply principles, concepts and methods from a broad range of technical and scientific disciplines for innovative products.
ObjectiveThe students are introduced to the fundamentals and physics of microelectronic devices as well as to microsystems in general (MEMS), basic electronic circuits for sensors, RF-MEMS, chemical microsystems, BioMEMS and microfluidics, magnetic sensors and optical devices, and in particular to the concepts of Nanosystems (focus on carbon nanotubes), based on the respective state-of-research in the field. They will be able to apply this knowledge for system research and development and to assess and apply principles, concepts and methods from a broad range of technical and scientific disciplines for innovative products.

During the weekly 3 hour module on Mondays dedicated to Übungen the students will learn the basics of Comsol Multiphysics and utilize this software to simulate MEMS devices to understand their operation more deeply and optimize their designs.
ContentTransducer fundamentals and test structures
Pressure sensors and accelerometers
Resonators and gyroscopes
RF MEMS
Acoustic transducers and energy harvesters
Thermal transducers and energy harvesters
Optical and magnetic transducers
Chemical sensors and biosensors, microfluidics and bioMEMS
Nanosystem concepts
Basic electronic circuits for sensors and microsystems
Lecture notesHandouts (on-line)
402-0414-00LStrongly Correlated Many-Body Systems: From Electrons to Ultracold Atoms to Photons
Does not take place this semester.
W6 credits2V + 1UA. Imamoglu, E. Demler
AbstractThis course covers the physics of strongly correlated systems that emerge in diverse platforms, ranging from two-dimensional electrons, through ultracold atoms in atomic lattices, to photons.
ObjectiveThe goal of the lecture is to prepare the students for research in strongly correlated systems currently investigated in vastly different physical platforms.
ContentFeshbach resonances, Bose & Fermi polarons, Anderson impurity model and the s-d Hamiltonian, Kondo effect, quantum magnetism, cavity-QED, probing noise in strongly correlated systems, variational non-Gaussian approach to interacting many-body systems.
Lecture notesHand-written lecture notes will be distributed.
Prerequisites / NoticeKnowledge of Quantum Mechanics at the level of QM II and exposure to Solid State Theory.
402-0468-15LNanomaterials for PhotonicsW6 credits2V + 1UR. Grange
AbstractThe lecture describes various nanomaterials (semiconductor, metal, dielectric, carbon-based...) for photonic applications (optoelectronics, plasmonics, ordered and disordered structures...). It starts with concepts of light-matter interactions, then the fabrication methods, the optical characterization techniques, the description of the properties and the state-of-the-art applications.
ObjectiveThe students will acquire theoretical and experimental knowledge about the different types of nanomaterials (semiconductors, metals, dielectric, carbon-based, ...) and their uses as building blocks for advanced applications in photonics (optoelectronics, plasmonics, photonic crystal, ...). Together with the exercises, the students will learn (1) to read, summarize and discuss scientific articles related to the lecture, (2) to estimate order of magnitudes with calculations using the theory seen during the lecture, (3) to prepare a short oral presentation and report about one topic related to the lecture, and (4) to imagine an original photonic device.
Content1. Introduction to nanomaterials for photonics
a. Classification of nanomaterials
b. Light-matter interaction at the nanoscale
c. Examples of nanophotonic devices

2. Wave physics for nanophotonics
a. Wavelength, wave equation, wave propagation
b. Dispersion relation
c. Interference
d. Scattering and absorption
e. Coherent and incoherent light

3. Analogies between photons and electrons
a. Quantum wave description
b. How to confine photons and electrons
c. Tunneling effects

4. Characterization of Nanomaterials
a. Optical microscopy: Bright and dark field, fluorescence, confocal, High resolution: PALM (STORM), STED
b. Light scattering techniques: DLS
c. Near field microscopy: SNOM
d. Electron microscopy: SEM, TEM
e. Scanning probe microscopy: STM, AFM
f. X-ray diffraction: XRD, EDS

5. Fabrication of nanomaterials
a. Top-down approach
b. Bottom-up approach

6. Plasmonics
a. What is a plasmon, Drude model
b. Surface plasmon and localized surface plasmon (sphere, rod, shell)
c. Theoretical models to calculate the radiated field: electrostatic approximation and Mie scattering
d. Fabrication of plasmonic structures: Chemical synthesis, Nanofabrication
e. Applications

7. Organic and inorganic nanomaterials
a. Organic quantum-confined structure: nanomers and quantum dots.
b. Carbon nanotubes: properties, bandgap description, fabrication
c. Graphene: motivation, fabrication, devices
d. Nanomarkers for biophotonics

8. Semiconductors
a. Crystalline structure, wave function
b. Quantum well: energy levels equation, confinement
c. Quantum wires, quantum dots
d. Optical properties related to quantum confinement
e. Example of effects: absorption, photoluminescence
f. Solid-state-lasers: edge emitting, surface emitting, quantum cascade

9. Photonic crystals
a. Analogy photonic and electronic crystal, in nature
b. 1D, 2D, 3D photonic crystal
c. Theoretical modelling: frequency and time domain technique
d. Features: band gap, local enhancement, superprism...

10. Nanocomposites
a. Effective medium regime
b. Metamaterials
c. Multiple scattering regime
d. Complex media: structural colour, random lasers, nonlinear disorder
Lecture notesSlides and book chapter will be available for downloading
LiteratureReferences will be given during the lecture
Prerequisites / NoticeBasics of solid-state physics (i.e. energy bands) can help
Selection: Particle Physics
NumberTitleTypeECTSHoursLecturers
402-0726-12LPhysics of Exotic AtomsW6 credits2V + 1UP. Crivelli
AbstractIn this course, we will review the status of physics with exotic atoms including the new exciting advances such as anti-hydrogen 1S-2S spectroscopy and measurements of the hyperfine splitting and the puzzling results of the muonic-hydrogen experiment for the determination of the proton charge radius.
ObjectiveThe course will give an introduction on the physics of exotic atoms covering both theoretical and experimental aspects. The focus will be set on the systems which are currently a subject of research in Switzerland: positronium at ETHZ, anti-hydrogen at CERN and muonium, muonic-H and muonic-He at PSI. The course will enable the students to follow recent publications in this field.
ContentReview of the theory of hydrogen and hydrogen-like atoms
Interaction of atoms with radiation
Hyperfine splitting theory and experiments: Positronium (Ps),
Muonium (Mu) and anti-hydrogen (Hbar)
High precision spectroscopy: Ps, Mu and Hbar
Lamb shift in muonic-H and muonic-He- the proton radius puzzle
Weak and strong interaction tests with exotic atoms
Anti-matter and gravitation
Applications of antimatter
Lecture notesscript
LiteraturePrecision physics of simple atoms and molecules, Savely G. Karshenboim, Springer 2008

Proceedings of the International Conference on Exotic Atoms (EXA 2008) and the 9th International Conference on Low Energy Antiproton Physics (LEAP 2008) held in Vienna, Austria, 15-19 September 2008 (PART I/II), Hyperfine Interactions, Volume 193, Numbers 1-3 / September 2009

Laser Spectroscopy: Vol. 1 Basic Principles Vol. 2 Experimental Techniques von Wolfgang Demtröder von Springer Berlin Heidelberg 2008
402-0738-00LStatistical Methods and Analysis Techniques in Experimental PhysicsW10 credits5GM. Donegà
AbstractThis lecture gives an introduction to the statistical methods and the various analysis techniques applied in experimental particle physics. The exercises treat problems of general statistical topics; they also include hands-on analysis projects, where students perform independent analyses on their computer, based on real data from actual particle physics experiments.
ObjectiveStudents will learn the most important statistical methods used in experimental particle physics. They will acquire the necessary skills to analyse large data records in a statistically correct manner. Learning how to present scientific results in a professional manner and how to discuss them.
ContentTopics include:
- modern methods of statistical data analysis
- probability distributions, error analysis, simulation methos, hypothesis testing, confidence intervals, setting limits and introduction to multivariate methods.
- most examples are taken from particle physics.

Methodology:
- lectures about the statistical topics;
- common discussions of examples;
- exercises: specific exercises to practise the topics of the lectures;
- all students perform statistical calculations on (their) computers;
- students complete a full data analysis in teams (of two) over the second half of the course, using real data taken from particle physics experiments;
- at the end of the course, the students present their analysis results in a scientific presentation;
- all students are directly tutored by assistants in the classroom.
Lecture notes- Copies of all lectures are available on the web-site of the course.
- A scriptum of the lectures is also available to all students of the course.
Literature1) Statistics: A guide to the use of statistical medhods in the Physical Sciences, R.J.Barlow; Wiley Verlag .
2) J Statistical data analysis, G. Cowan, Oxford University Press; ISBN: 0198501552.
3) Statistische und numerische Methoden der Datenanalyse, V.Blobel und E.Lohrmann, Teubner Studienbuecher Verlag.
4) Data Analysis, a Bayesian Tutorial, D.S.Sivia with J.Skilling,
Oxford Science Publications.
Prerequisites / NoticeBasic knowlege of nuclear and particle physics are prerequisites.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Problem-solvingassessed
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Personal CompetenciesCreative Thinkingassessed
Critical Thinkingassessed
402-0703-00LPhenomenology of Physics Beyond the Standard Model Information W6 credits2V + 1UM. Spira, A. de Cosa
AbstractAfter a short introduction to the theoretical foundations and experimental tests of the standard model, grand unified theories, supersymmetry, leptoquarks, and hidden valley models will be treated among other topics. Thereby the phenomenological aspects, i.e. the search for new particles and interactions at existing and future particle accelerators will play a significant role.
ObjectiveThe goal of the lecture is the introduction into several theoretical concepts that provide solutions for the open questions of the Standard Model of particle physics and thus lead to physics beyond the Standard Model.

Besides the theoretical concepts the phenomenological aspects are discussed, i.e. the search for new particles and interactions at the existing and future particle accelerators.
Contentsee home page: Link
Lecture notessee home page: Link
Literaturesee home page: Link
Prerequisites / NoticeWill be taught in German only if all students understand German.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Personal CompetenciesCreative Thinkingassessed
Critical Thinkingassessed
  •  Page  1  of  5 Next page Last page     All