Suchergebnis: Katalogdaten im Frühjahrssemester 2023
Rechnergestützte Wissenschaften Bachelor | ||||||||||||||||||||||||||||||||||||||||||
Obligatorische Fächer des Basisjahres | ||||||||||||||||||||||||||||||||||||||||||
Basisprüfungsblock 1 Wird im Herbstsemester angeboten. | ||||||||||||||||||||||||||||||||||||||||||
Basisprüfungsblock 2 | ||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
401-0232-10L | Analysis 2 | O | 8 KP | 4V + 2U | T. Rivière | |||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Einführung in die mehrdimensionale Differential- und Integralrechung. | |||||||||||||||||||||||||||||||||||||||||
Lernziel | Einführung in die Grundlagen der Analysis | |||||||||||||||||||||||||||||||||||||||||
Inhalt | Differenzierbare Abbildungen, Maxima und Minima, der Satz ueber implizite Funktionen, mehrfache Integrale, Integration ueber Untermannigfaltigkeiten, die Saetze von Gauss und Stokes. | |||||||||||||||||||||||||||||||||||||||||
Skript | Christian Blatter: Ingenieur-Analysis (Kapitel 4-6). Konrad Koenigsberger, Analysis II. | |||||||||||||||||||||||||||||||||||||||||
401-0302-10L | Komplexe Analysis | O | 4 KP | 3V + 1U | F. Da Lio | |||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Grundlagen der Komplexen Analysis in Theorie und Anwendung, insbesondere globale Eigenschaften analytischer Funktionen. Einführung in die Integraltransformationen und Beschreibung einiger Anwendungen | |||||||||||||||||||||||||||||||||||||||||
Lernziel | Erwerb von einigen grundlegenden Werkzeuge der komplexen Analysis. | |||||||||||||||||||||||||||||||||||||||||
Inhalt | Beispiele analytischer Funktionen, Cauchyscher Integralsatz, Taylor- und Laurententwicklungen, Singularitäten analytischer Funktionen, Residuenkalkül. Fourierreihen und Fourier-Transformation, Laplace-Transformation. | |||||||||||||||||||||||||||||||||||||||||
Literatur | J. Brown, R. Churchill: "Complex Analysis and Applications", McGraw-Hill 1995 T. Needham. Visual complex analysis. Clarendon Press, Oxford. 2004. M. Ablowitz, A. Fokas: "Complex variables: introduction and applications", Cambridge Text in Applied Mathematics, Cambridge University Press 1997 E. Kreyszig: "Advanced Engineering Analysis", Wiley 1999 J. Marsden, M. Hoffman: "Basic complex analysis", W. H. Freeman 1999 P. P. G. Dyke: "An Introduction to Laplace Transforms and Fourier Series", Springer 2004 A. Oppenheim, A. Willsky: "Signals & Systems", Prentice Hall 1997 M. Spiegel: "Laplace Transforms", Schaum's Outlines, Mc Graw Hill | |||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Voraussetzungen: Analysis I und II | |||||||||||||||||||||||||||||||||||||||||
402-0044-00L | Physik II | O | 4 KP | 3V + 1U | S. P. Quanz | |||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Einführung in die Denk- und Arbeitsweise in der Physik unter Zuhilfenahme von Demonstrationsexperimenten: Elektrizität und Magnetismus, Licht, Einführung in die Moderne Physik. | |||||||||||||||||||||||||||||||||||||||||
Lernziel | Vermittlung der physikalischen Denk- und Arbeitsweise und Einführung in die Methoden in einer experimentellen Wissenschaft. Der Studenten/in soll lernen physikalische Fragestellungen im eigenen Wissenschaftsbereich zu identifizieren, zu kommunizieren und zu lösen. | |||||||||||||||||||||||||||||||||||||||||
Inhalt | Elektrizität und Magnetismus (elektrischer Strom, Magnetfelder, magnetische Induktion, Magnetismus der Materie, Maxwellsche Gleichungen) Optik (Licht, geometrische Optik, Interferenz und Beugung) Kurze Einführung in die Quantenphysik | |||||||||||||||||||||||||||||||||||||||||
Skript | Die Vorlesung richtet sich nach dem Lehrbuch "Physik" von Paul A. Tipler | |||||||||||||||||||||||||||||||||||||||||
Literatur | Paul A. Tipler and Gene Mosca Physik Springer Spektrum Verlag | |||||||||||||||||||||||||||||||||||||||||
529-4000-00L | Chemie | O | 4 KP | 3G | E. C. Meister | |||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Einführung in die Chemie mit Aspekten aus der anorganischen, organischen und physikalischen Chemie. | |||||||||||||||||||||||||||||||||||||||||
Lernziel | - Einfache Modelle der chemischen Bindung und der dreidimensionalen Struktur von Molekülen verstehen - Ausgewählte chemische Systeme anhand von Reaktionsgleichungen und Gleichgewichtsrechnungen beschreiben und quantitativ erfassen - Grundlegende Begriffe der chemischen Kinetik (z. B. Reaktionsordnung, Geschwindigkeitsgesetz und -konstante) verstehen und anwenden. | |||||||||||||||||||||||||||||||||||||||||
Inhalt | Periodisches System der Elemente, chemische Bindung (LCAO-MO), molekulare Struktur (VSEPR), Reaktionen, Gleichgewicht, chemische Kinetik. | |||||||||||||||||||||||||||||||||||||||||
Skript | Kopien der Vorlesungs-Präsentationen und weitere Unterlagen werden abgegeben. | |||||||||||||||||||||||||||||||||||||||||
Literatur | C.E. Housecroft, E.C. Constable, Chemistry. An Introduction to Organic, Inorganic and Physical Chemistry, 4th ed., Pearson: Harlow 2010. C.E. Mortimer, U. Müller, Chemie, 11. Auflage, Thieme: Stuttgart 2014. | |||||||||||||||||||||||||||||||||||||||||
252-0002-00L | Datenstrukturen & Algorithmen | O | 8 KP | 4V + 2U | M. Fischer, F. Friedrich Wicker | |||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Der Kurs vermittelt die Grundlagen für den Entwurf und die Analyse von Algorithmen. Anhand klassischer Probleme werden gängige Datenstrukturen, Algorithmen und Paradigmen für den Algorithmenentwurf diskutiert. Der Kurs umfasst auch eine Einführung in die parallele und nebenläufige Programmierung und das Programmiermodell von C++ wird eingehend diskutiert. | |||||||||||||||||||||||||||||||||||||||||
Lernziel | Verständnis des Entwurfs und der Analyse grundlegender Algorithmen und Datenstrukturen. Wissen um die Chancen, Probleme und Grenzen der parallelen und nebenläufigen Programmierung. Vertiefter Einblick in ein modernes Programmiermodell anhand der Prorgammiersprache C++. | |||||||||||||||||||||||||||||||||||||||||
Inhalt | Datenstrukturen und Algorithmen: Mathematische Tools für die Analyse von Algorithmen (asymptotisches Funktionenwachstum, Rekursionsgleichungen, Rekursionsbäume), informelle Beweise für die Korrektheit von Algorithmen (Invarianten und Codetransformation), Entwurfsparadigmen für die Entwicklung von Algorithmen (Induktion, Divide-and-Conquer, Sweep-Line-Methode, Backtracking und dynamische Programmierung), klassische algorithmische Probleme (Suche, Auswahl und Sortierung), Datenstrukturen für verschiedene Zwecke (verkettete Listen, Hash-Tabellen, balancierte Suchbäume, Quad-Trees, Heaps, Union-Find), weitere Tools für die Laufzeitanalyse (z.B. amortisierte Analyse). Die Beziehung und enge Kopplung zwischen Algorithmen und Datenstrukturen wird anhand von geometrischen Problemen (konvexe Hülle, Linienschnitte, dichteste Punktepaare) und Graphenalgorithmen (Traversierungen, topologische Sortierung, transitive Hülle, kürzeste Pfade, minimale Spannbäume, maximaler Fluss) illustriert. Programmiermodell von C++: korrekte und effiziente Speicherbehandlung, generische Programmierung mit Templates, funktionale Ansätze mit Funktoren und Lambda-Ausdrücken. Parallele Programmierung: Konzepte der parallelen Programmierung (Amdahl/Gustavson, Task/Daten-Parallelität, Scheduling), Probleme der Nebenläufigkeit (data races, bad interleavings, memory reordering), Prozess-Synchronisation und Kommunikation in einem Shared-Memory-System (Mutual Exclusion, Semaphoren, Monitore, Condition-Variablen), Fortschrittsbedingungen (Deadlock-Freiheit, Starvation). Die im Kurs vermittelten Konzepte werden mit praktisch relevanten Algorithmen und Anwendungen motiviert und illustriert. Die Übungen werden in Code-Expert, einer Online-IDE und einem Übungsmanagementsystem, durchgeführt. Alle benötigten mathematischen Tools ausserhalb des Schulwissens werden im Kurs behandelt, einschliesslich einer Einführung zur Graphentheorie. | |||||||||||||||||||||||||||||||||||||||||
Literatur | (auf der Kurshomepage angegeben) | |||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Voraussetzung: Vorlesung 252-0835-00L Informatik I 252-0835-00L oder äquivalente Kenntnisse in der Programmierung mit C++. | |||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||
Grundlagenfächer | ||||||||||||||||||||||||||||||||||||||||||
Block G1 Die Lehrveranstaltungen von Block G1 finden im Herbstsemester statt. | ||||||||||||||||||||||||||||||||||||||||||
Block G2 Die Lehrveranstaltungen von Block G2 finden im Herbstsemester statt. | ||||||||||||||||||||||||||||||||||||||||||
Block G3 | ||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||
401-0674-00L | Numerical Methods for Partial Differential Equations Nicht für Studierende BSc/MSc Mathematik | O | 10 KP | 2G + 2U + 2P + 4A | R. Hiptmair | |||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Derivation, properties, and implementation of fundamental numerical methods for a few key partial differential equations: convection-diffusion, heat equation, wave equation, conservation laws. Implementation in C++ based on a finite element library. | |||||||||||||||||||||||||||||||||||||||||
Lernziel | Main skills to be acquired in this course: * Ability to implement fundamental numerical methods for the solution of partial differential equations efficiently. * Ability to modify and adapt numerical algorithms guided by awareness of their mathematical foundations. * Ability to select and assess numerical methods in light of the predictions of theory * Ability to identify features of a PDE (= partial differential equation) based model that are relevant for the selection and performance of a numerical algorithm. * Ability to understand research publications on theoretical and practical aspects of numerical methods for partial differential equations. * Skills in the efficient implementation of finite element methods on unstructured meshes. This course is neither a course on the mathematical foundations and numerical analysis of methods nor an course that merely teaches recipes and how to apply software packages. | |||||||||||||||||||||||||||||||||||||||||
Inhalt | Second-order scalar elliptic boundary value problems Finite-element methods (FEM) FEM: Convergence and Accuracy Non-linear elliptic boundary value problems Second-order linear evolution problems Convection-diffusion problems Numerical methods for conservation laws | |||||||||||||||||||||||||||||||||||||||||
Skript | The lecture will be taught in flipped classroom format: - Video tutorials for all thematic units will be published online. - Tablet notes accompanying the videos will be made available to the audience as PDF. - A comprehensive lecture document will cover all aspects of the course, see https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf | |||||||||||||||||||||||||||||||||||||||||
Literatur | Chapters of the following books provide supplementary reading (detailed references in course material): * D. Braess: Finite Elemente, Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie, Springer 2007 (available online). * S. Brenner and R. Scott. Mathematical theory of finite element methods, Springer 2008 (available online). * A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements, volume 159 of Applied Mathematical Sciences. Springer, New York, 2004. * Ch. Großmann and H.-G. Roos: Numerical Treatment of Partial Differential Equations, Springer 2007. * W. Hackbusch. Elliptic Differential Equations. Theory and Numerical Treatment, volume 18 of Springer Series in Computational Mathematics. Springer, Berlin, 1992. * P. Knabner and L. Angermann. Numerical Methods for Elliptic and Parabolic Partial Differential Equations, volume 44 of Texts in Applied Mathematics. Springer, Heidelberg, 2003. * S. Larsson and V. Thomée. Partial Differential Equations with Numerical Methods, volume 45 of Texts in Applied Mathematics. Springer, Heidelberg, 2003. * R. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, UK, 2002. However, study of supplementary literature is not important for for following the course. | |||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Mastery of basic calculus and linear algebra is taken for granted. Familiarity with fundamental numerical methods (solution methods for linear systems of equations, interpolation, approximation, numerical quadrature, numerical integration of ODEs) is essential. Important: Coding skills and experience in C++ are essential. Homework assignments involve substantial coding, partly based on a C++ finite element library. The written examination will be computer based and will comprise coding tasks. | |||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||
401-0604-00L | Wahrscheinlichkeitstheorie und Statistik | O | 4 KP | 2V + 1U | B. Acciaio | |||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Wahrscheinlichkeitsmodelle und Anwendungen, Einführung in die Estimationstheorie und in die statistischen Tests. | |||||||||||||||||||||||||||||||||||||||||
Lernziel | Fähigkeit, die behandelten wahrscheinlichkeitstheoretischen Methoden und Modellen zu verstehen und anzuwenden. Fähigkeit, einfache statistische Tests selbst durchzuführen und die Resultate zu interpretieren | |||||||||||||||||||||||||||||||||||||||||
Inhalt | Der Begriff Wahrscheinlichkeitsraum und einige klassische Modelle: Die Axiome von Kolmogorov, einfache Folgerungen, diskrete Modelle, Dichtefunktionen, Produktmodelle, Zusammenhang zwischen den bisher betrachteten Modellen, Verteilungsfunktionen, Transformation von Wahrscheinlichkeitsverteilungen. Bedingte Wahrscheinlichkeiten: Definition und Beispiele, Berechnung von absoluten aus bedingten Wahrscheinlichkeiten, Bayes'sche Regel, Anwendung auf Nachrichtenquellen, bedingte Verteilungen. Der Erwartungswert einer Zufallsvariablen, Varianz, Kovarianz und Korrelation, lineare Prognosen, das Gesetz der grossen Zahlen, der zentrale Grenzwertsatz. Einführung in die Statistik: Schätzung von Parametern, Tests. | |||||||||||||||||||||||||||||||||||||||||
Skript | ja | |||||||||||||||||||||||||||||||||||||||||
Literatur | Textbuch: P. Brémaud: 'An Introduction to Probabilistic Modeling', Springer, 1988. | |||||||||||||||||||||||||||||||||||||||||
Block G4 | ||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||
529-0431-00L | Physikalische Chemie III: Molekulare Quantenmechanik | O | 4 KP | 4G | F. Merkt, U. Hollenstein | |||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Postulate der Quantenmechanik, Operatorenalgebra, Schrödingergleichung, Zustandsfunktionen und Erwartungswerte, Matrixdarstellung von Operatoren, das Teilchen im Kasten, Tunnelprozess, harmonischer Oszillator, molekulare Schwingungen, Drehimpuls und Spin, verallgemeinertes Pauli Prinzip, Störungstheorie, Variationsprinzip, elektronische Struktur von Atomen und Molekülen, Born-Oppenheimer Näherung. | |||||||||||||||||||||||||||||||||||||||||
Lernziel | Es handelt sich um eine erste Grundvorlesung in Quantenmechanik. Die Vorlesung beginnt mit einem Überblick über die grundlegenden Konzepte der Quantenmechanik und führt den mathematischen Formalismus ein. Im Folgenden werden die Postulate und Theoreme der Quantenmechanik im Kontext der experimentellen und rechnerischen Ermittlung von physikalischen Grössen diskutiert. Die Vorlesung vermittelt die notwendigen Werkzeuge für das Verständnis der elementaren Quantenphänomene in Atomen und Molekülen. | |||||||||||||||||||||||||||||||||||||||||
Inhalt | Postulate und Theoreme der Quantenmechanik: Operatorenalgebra, Schrödingergleichung, Zustandsfunktionen und Erwartungswerte. Lineare Bewegungen: Das freie Teilchen, das Teilchen im Kasten, quantenmechanisches Tunneln, der harmonische Oszillator und molekulare Schwingungen. Drehimpulse: Spin- und Bahnbewegungen, molekulare Rotationen. Elektronische Struktur von Atomen und Molekülen: Pauli-Prinzip, Drehimpulskopplung, Born-Oppenheimer Näherung. Grundlagen der Variations- und Störungtheorie. Behandlung grösserer Systeme (Festkörper, Nanostrukturen). | |||||||||||||||||||||||||||||||||||||||||
Skript | Ein Vorlesungsskript in Deutsch wird erhältlich sein. Das Skript ersetzt allerdings NICHT persönliche Notizen und deckt nicht alle Aspekte der Vorlesung ab. | |||||||||||||||||||||||||||||||||||||||||
151-0102-00L | Fluid Dynamics I | O | 6 KP | 4V + 2U | F. Coletti | |||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Es wird eine Einführung in die physikalischen und mathematischen Grundlagen der Fluiddynamik geboten. Themengebiete sind u.a. Dimensionsanalyse, integrale und differentielle Erhaltungsgleichungen, reibungsfreie und -behaftete Strömungen, Navier-Stokes Gleichungen, Grenzschichten, turbulente Rohrströmung. Elementare Lösungen und Beipiele werden päsentiert. | |||||||||||||||||||||||||||||||||||||||||
Lernziel | Einführung in die physikalischen und mathematischen Grundlagen der Fluiddynamik. Vertrautmachen mit den Grundbegriffen, Anwendungen auf einfache Probleme. | |||||||||||||||||||||||||||||||||||||||||
Inhalt | Phänomene, Anwendungen, Grundfragen Dimensionsanalyse und Ähnlichkeit; Kinematische Beschreibung; Erhaltungssätze (Masse, Impuls, Energie), integrale und differentielle Formulierungen; Reibungsfreie Strömungen: Euler-Gleichungen, Stromfadentheorie, Satz von Bernoulli; Reibungsbehaftete Strömungen: Navier-Stokes-Gleichungen; Grenzschichten; Turbulenz | |||||||||||||||||||||||||||||||||||||||||
Skript | Ein Skript (erweiterte Formelsammlung) zur Vorlesung wird elektronisch zur Verfügung gestellt. | |||||||||||||||||||||||||||||||||||||||||
Literatur | Empfohlenes Buch: Fluid Mechanics, Kundu & Cohen & Dowling, 6th ed., Academic Press / Elsevier (2015). | |||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Voraussetzungen: Physik, Analysis | |||||||||||||||||||||||||||||||||||||||||
529-0483-00L | Statistische Physik und Computer Simulation | O | 6 KP | 2V + 1U | S. Riniker, P. H. Hünenberger | |||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Prinzipien und Anwendungen der statistischen Mechanik und Gleichgewichts-Molekulardynamik, Monte-Carlo-Verfahren, stochastischen Dynamik und freien Energie-Rechnung. Die Übungen verwenden ein Computersimulationsprogramm, um Ensembles zu generieren und danach Ensembledurchschnitte zu berechnen. | |||||||||||||||||||||||||||||||||||||||||
Lernziel | Einführung in die statistische Mechanik mit Hilfe von Computersimulationen; Erwerben der Fertigkeit, Computersimulationen durchzuführen und die Resultate zu interpretieren. | |||||||||||||||||||||||||||||||||||||||||
Inhalt | Prinzipien und Anwendungen der statistischen Mechanik und Gleichgewichts-Molekulardynamik, Monte-Carlo-Verfahren, stochastischen Dynamik und freien Energie-Rechnung. Die Übungen verwenden ein Computersimulationsprogramm, um Ensembles zu generieren und danach Ensembledurchschnitte zu berechnen. | |||||||||||||||||||||||||||||||||||||||||
Literatur | wird in der Vorlesung bekannt gegeben | |||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Da die Übungen am Computer wesentlich andere Fähigkeiten vermitteln und prüfen als die Vorlesung und schriftliche Prüfung, werden am Ende der Veranstaltung Ergebnisse einer kleinen Programmierarbeit von je zwei TeilnehmerInnen in einer 10 minütigen Präsentation vorgestellt. Zusätzliche Informationen werden bei Veranstaltungsbeginn bekannt gegeben. | |||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||
Kernfächer aus dem Bereich I (Module) | ||||||||||||||||||||||||||||||||||||||||||
Modul A | ||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||
151-0116-00L | High Performance Computing for Science and Engineering (HPCSE) for CSE | W | 7 KP | 4G + 2P | S. M. Martin, E. A. Economides | |||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course focuses on programming methods and tools for modern parallel systems, such as large-scale supercomputers with multi and many-core processors. Emphasis will be placed on techniques and models to maximize the performance of such systems. This is a hands-on course that relies on practical applications in science and engineering to demonstrate the importance of HPC. | |||||||||||||||||||||||||||||||||||||||||
Lernziel | The objective of this course is to specialize students in the use of supercomputer systems and advanced (GPU) processors for solving large-scale scientific and engineering applications. Students will acquire tools that will enable them to solve computational problems, both in scientific research and engineering, that require large amounts of computation which can only be achieved by the efficient use of supercomputers and GPU processors. | |||||||||||||||||||||||||||||||||||||||||
Inhalt | The topics offered by this lecture include: - Large-scale computing topics: communication-tolerant programming and scalability. + Communication-Tolerant Programming + Hybrid Parallelism (MPI + OpenMP) + Work Tiling and Advanced Threading-Based Libraries - High-Throughput Computing and it's use in Monte-carlo and sampling methods for stochastic optimization methods and uncertainty quantification (UQ) - Principles and advance performance optimization topics for Many-Core (GPU) Programming | |||||||||||||||||||||||||||||||||||||||||
Skript | https://www.cse-lab.ethz.ch/teaching/hpcse-ii_fs23/ The materials include class notes, presentation slides, and lecture recordings. | |||||||||||||||||||||||||||||||||||||||||
Literatur | - Class notes - Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein - CUDA by example, J. Sanders and E. Kandrot | |||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Attendance of HPCSE I | |||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||
Modul B | ||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||
401-3670-00L | High-Performance Computing Lab for CSE | W | 7 KP | 4G + 1P | R. Käppeli, O. Schenk | |||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This HPC Lab for CSE will focus on the effective exploitation of state-of-the-art HPC systems with a special focus on Computational Science and Engineering. The content of the course is tailored for 3th year Bachelor students interested in both learning parallel programming models, scientific mathematical libraries, and having hands-on experience using HPC systems. | |||||||||||||||||||||||||||||||||||||||||
Lernziel | A goal of the course is that students will learn principles and practices of basic numerical methods and HPC to enable large-scale scientific simulations. This goal will be achieved within six to eight mini-projects with a focus on HPC and CSE. | |||||||||||||||||||||||||||||||||||||||||
Inhalt | Despite the success of parallel programming languages standardization, there is growing evidence that future computational science applications will depend on a computational software stack. The computational software approach in this HPC Lab is based on building and using small, simple software parts with flexible, easy-to-use interfaces. These simple software parts are toolkits - libraries containing basic services commonly needed by applications - and they build the underlying software layer for computational science and engineering applications. This course will introduce some of the many ways in which mathematical HPC software and numerical algorithms in computer science and mathematics play a role in computational science. The students will learn within several mini-projects how these algorithms and software can be used to enable large-scale scientific applications. It covers topics such as single core optimization for the memory hierarchy, parallel large-scale graph partititoning, parallel mathematical linear solvers, large-scale nonlinear optimization, and parallel software for the mathematical solution of nonlinear partial differential equations. The course takes both an algorithmic and a computing approach, focusing on techniques that have a high level of applicability to engineering, computer science, and industrial mathematics. | |||||||||||||||||||||||||||||||||||||||||
Skript | Link to Moodle course: https://moodle-app2.let.ethz.ch/course/view.php?id=17005 | |||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Solid knowledge of the C programming language, parallel programming paradigms such as OpenMP and MPI, and numerical methods in scientific computing in the area of linear algebra, mathematical optimization, and partial differential equations. The students might continue to study these HPC techniques within the annual USI-CSCS Summer University on "Effective High-Performance Computing & Data Analytics". The content of the course is tailored for intermediate graduate students interested in both learning parallel programming models, and having hands-on experience using HPC systems. Starting from an introductory explanation of the available systems at CSCS, the course will progress to more applied topics such as parallel programming on accelerators, scientific libraries, and deep learning software frameworks. The following topics will be covered: GPU/ARM architectures, GPU/ARM programming, Message passing programming model (MPI), Performance optimization and scientific libraries, interactive supercomputing, Python libraries, Introduction to Machine Learning, and GPU/ARM optimized framework. This year’s USI-CSCS Summer University on HPC and Data Analytics, which will be composed of two sections – online from July 11 to 21, 2022, and on-site from July 23 to 25, 2022. The digital portion of this annual program will last two weeks (weekends excluded) and will be held from July 11 to 21, between 9:00 and 15:30 (/16:30 on the last day) CEST (Central European Summer Time). The optional in-person portion of the program is a three-day event from July 23 to 25 that we offer to students of the CSCS-USI Summer University as an additional option to connect with other students and actual research through encounters with Professors, to create collaborations and participate in engaging and interactive sessions. We look forward to welcoming and getting to know interested students selected for the summer university to the Italian-speaking area of Switzerland, and to sharing with them some entertaining moments around networking and inspiring lectures. Further information on this portion of the program will be provided in the following weeks. More information about the summer university is available here: Link | |||||||||||||||||||||||||||||||||||||||||
Modul C | ||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||
401-3670-00L | High-Performance Computing Lab for CSE | W | 7 KP | 4G + 1P | R. Käppeli, O. Schenk | |||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This HPC Lab for CSE will focus on the effective exploitation of state-of-the-art HPC systems with a special focus on Computational Science and Engineering. The content of the course is tailored for 3th year Bachelor students interested in both learning parallel programming models, scientific mathematical libraries, and having hands-on experience using HPC systems. | |||||||||||||||||||||||||||||||||||||||||
Lernziel | A goal of the course is that students will learn principles and practices of basic numerical methods and HPC to enable large-scale scientific simulations. This goal will be achieved within six to eight mini-projects with a focus on HPC and CSE. | |||||||||||||||||||||||||||||||||||||||||
Inhalt | Despite the success of parallel programming languages standardization, there is growing evidence that future computational science applications will depend on a computational software stack. The computational software approach in this HPC Lab is based on building and using small, simple software parts with flexible, easy-to-use interfaces. These simple software parts are toolkits - libraries containing basic services commonly needed by applications - and they build the underlying software layer for computational science and engineering applications. This course will introduce some of the many ways in which mathematical HPC software and numerical algorithms in computer science and mathematics play a role in computational science. The students will learn within several mini-projects how these algorithms and software can be used to enable large-scale scientific applications. It covers topics such as single core optimization for the memory hierarchy, parallel large-scale graph partititoning, parallel mathematical linear solvers, large-scale nonlinear optimization, and parallel software for the mathematical solution of nonlinear partial differential equations. The course takes both an algorithmic and a computing approach, focusing on techniques that have a high level of applicability to engineering, computer science, and industrial mathematics. | |||||||||||||||||||||||||||||||||||||||||
Skript | Link to Moodle course: https://moodle-app2.let.ethz.ch/course/view.php?id=17005 | |||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Solid knowledge of the C programming language, parallel programming paradigms such as OpenMP and MPI, and numerical methods in scientific computing in the area of linear algebra, mathematical optimization, and partial differential equations. The students might continue to study these HPC techniques within the annual USI-CSCS Summer University on "Effective High-Performance Computing & Data Analytics". The content of the course is tailored for intermediate graduate students interested in both learning parallel programming models, and having hands-on experience using HPC systems. Starting from an introductory explanation of the available systems at CSCS, the course will progress to more applied topics such as parallel programming on accelerators, scientific libraries, and deep learning software frameworks. The following topics will be covered: GPU/ARM architectures, GPU/ARM programming, Message passing programming model (MPI), Performance optimization and scientific libraries, interactive supercomputing, Python libraries, Introduction to Machine Learning, and GPU/ARM optimized framework. This year’s USI-CSCS Summer University on HPC and Data Analytics, which will be composed of two sections – online from July 11 to 21, 2022, and on-site from July 23 to 25, 2022. The digital portion of this annual program will last two weeks (weekends excluded) and will be held from July 11 to 21, between 9:00 and 15:30 (/16:30 on the last day) CEST (Central European Summer Time). The optional in-person portion of the program is a three-day event from July 23 to 25 that we offer to students of the CSCS-USI Summer University as an additional option to connect with other students and actual research through encounters with Professors, to create collaborations and participate in engaging and interactive sessions. We look forward to welcoming and getting to know interested students selected for the summer university to the Italian-speaking area of Switzerland, and to sharing with them some entertaining moments around networking and inspiring lectures. Further information on this portion of the program will be provided in the following weeks. More information about the summer university is available here: Link | |||||||||||||||||||||||||||||||||||||||||
Kernfächer aus dem Bereich II Die Anrechnung der Lerneinheit 252-0220-00L Introduction to Machine Learning als Kernfach schliesst deren Anrechnung für das Vertiefungsgebiet Robotik aus. | ||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||
252-0232-00L | Software Engineering | W | 6 KP | 2V + 1U | F. Friedrich Wicker, M. Schwerhoff, H. Lehner | |||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course introduces both theoretical and applied aspects of software engineering. It covers: - Software Architecture - Informal and formal Modeling - Design Patterns - Software Engineering Principles - Code Refactoring - Program Testing | |||||||||||||||||||||||||||||||||||||||||
Lernziel | The course has two main objectives: - Obtain an end-to-end (both, theoretical and practical) understanding of the core techniques used for building quality software. - Be able to apply these techniques in practice. | |||||||||||||||||||||||||||||||||||||||||
Inhalt | While the lecture will provide the theoretical foundations for the various aspects of software engineering, the students will apply those techniques in project work that will span over the whole semester - involving all aspects of software engineering, from understanding requirements over design and implementation to deployment and change requests. | |||||||||||||||||||||||||||||||||||||||||
Skript | no lecture notes | |||||||||||||||||||||||||||||||||||||||||
Literatur | Will be announced in the lecture | |||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||
252-0220-00L | Introduction to Machine Learning Preference is given to students in programmes in which the course is being offered. All other students will be waitlisted. Please do not contact Prof. Krause for any questions in this regard. If necessary, please contact studiensekretariat@inf.ethz.ch | W | 8 KP | 4V + 2U + 1A | A. Krause, F. Yang | |||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course introduces the foundations of learning and making predictions based on data. | |||||||||||||||||||||||||||||||||||||||||
Lernziel | The course will introduce the foundations of learning and making predictions from data. We will study basic concepts such as trading goodness of fit and model complexitiy. We will discuss important machine learning algorithms used in practice, and provide hands-on experience in a course project. | |||||||||||||||||||||||||||||||||||||||||
Inhalt | - Linear regression (overfitting, cross-validation/bootstrap, model selection, regularization, [stochastic] gradient descent) - Linear classification: Logistic regression (feature selection, sparsity, multi-class) - Kernels and the kernel trick (Properties of kernels; applications to linear and logistic regression); k-nearest neighbor - Neural networks (backpropagation, regularization, convolutional neural networks) - Unsupervised learning (k-means, PCA, neural network autoencoders) - The statistical perspective (regularization as prior; loss as likelihood; learning as MAP inference) - Statistical decision theory (decision making based on statistical models and utility functions) - Discriminative vs. generative modeling (benefits and challenges in modeling joint vy. conditional distributions) - Bayes' classifiers (Naive Bayes, Gaussian Bayes; MLE) - Bayesian approaches to unsupervised learning (Gaussian mixtures, EM) | |||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Designed to provide a basis for following courses: - Advanced Machine Learning - Deep Learning - Probabilistic Artificial Intelligence - Seminar "Advanced Topics in Machine Learning" | |||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||
Vertiefungsgebiete | ||||||||||||||||||||||||||||||||||||||||||
Astrophysik | ||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||
401-3961-00L | Physical Cosmology (University of Zurich) No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student. UZH Module Code: AST513 Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html | W | 10 KP | 4V + 2U | Uni-Dozierende | |||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | We study the history of our universe on large scales. We first discuss key cosmological observations that led to our standard model of cosmology, and we study in detail the origin and the evolution of the Universe such as inflation, big bang nucleosynthesis, and cosmic microwave background anisotropies. In the second part we learn (relativistic) perturbation theory ... | |||||||||||||||||||||||||||||||||||||||||
Lernziel | ||||||||||||||||||||||||||||||||||||||||||
Inhalt | In this course (formerly known as theoretical cosmology), we study the history of our universe on large scales. We first discuss key cosmological observations that led to our standard model of cosmology, and we study in detail the origin and the evolution of the Universe such as inflation, big bang nucleosynthesis, and cosmic microwave background anisotropies. In the second part we learn (relativistic) perturbation theory and apply it to initial conditions, large-scale structure and weak gravitational lensing. | |||||||||||||||||||||||||||||||||||||||||
Literatur | Sugestted textbooks: H. Mo, F. Van den Bosch, S. White: Galaxy Formation and Evolution S. Carroll: Space-Time and Geometry: An Introduction to General Relativitv S. Dodelson: Modern Cosmoloay Secondary textbooks: S. Weinberg: Gravitation and Cosmology V. Mukhanov: Phvsical Foundations of Cosmology E. W. Kolb and M. S. Turner: The Early Universe N. Straumann: General relativity with applications to astrophysics A. Liddle and D. Lvth: Cosmological Inflation and Large Scale Structure | |||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Basic knowledge of general relativity is required. | |||||||||||||||||||||||||||||||||||||||||
Atmosphärenphysik | ||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||
701-1216-00L | Weather and Climate Models | W | 4 KP | 3G | C. Schär, D. Leutwyler, M. Wild | |||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course provides an introduction to weather and climate models. It discusses how these models are built addressing both the dynamical core and the physical parameterizations, and it provides an overview of how these models are used in numerical weather prediction and climate research. As a tutorial, students conduct a term project and build a simple atmospheric model using the language PYTHON. | |||||||||||||||||||||||||||||||||||||||||
Lernziel | At the end of this course, students understand how weather and climate models are formulated from the governing physical principles, and how they are used for climate and weather prediction purposes. | |||||||||||||||||||||||||||||||||||||||||
Inhalt | The course provides an introduction into the following themes: numerical methods (finite differences and spectral methods); adiabatic formulation of atmospheric models (vertical coordinates, hydrostatic approximation); parameterization of physical processes (e.g. clouds, convection, boundary layer, radiation); atmospheric data assimilation and weather prediction; predictability (chaos-theory, ensemble methods); climate models (coupled atmospheric, oceanic and biogeochemical models); climate prediction. Hands-on experience with simple models will be acquired in the tutorials. | |||||||||||||||||||||||||||||||||||||||||
Skript | Slides and lecture notes will be made available at Link | |||||||||||||||||||||||||||||||||||||||||
Literatur | List of literature will be provided. | |||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Prerequisites: to follow this course, you need some basic background in atmospheric science, numerical methods (e.g., "Numerische Methoden in der Umweltphysik", 701-0461-00L) as well as experience in programming. Previous experience with PYTHON is useful but not required. | |||||||||||||||||||||||||||||||||||||||||
Chemie | ||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||
529-0474-00L | Quantenchemie | W | 6 KP | 3G | M. Reiher, J. P. Unsleber, T. Weymuth | |||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Einführung in Konzepte der Elektronenstruktur-Theorie und in die Methoden der numerischen Quantenchemie; begleitende Übungen mit Papier und Bleistift, sowie Anleitungen zu praktischen Berechnungen mit Quantenchemie-Programmen am Computer. | |||||||||||||||||||||||||||||||||||||||||
Lernziel | Chemie kann inzwischen vollständig am Computer betrieben werden, eine intellektuelle Leistung, für die 1998 der Nobelpreis an Pople und Kohn verliehen wurde. Diese Vorlesung zeigt, wie das geht. Erarbeitet wird dabei die Vielteilchen-Quantentheorie von Mehrelektronensystemen (Atome und Moleküle) und ihre Implementierung in Computerprogramme. Es soll ein vollständiges Bild der Quantenchemie vermittelt werden, das alles Rüstzeug zur Verfügung stellt, um selbst solche Berechnungen durchführen zu können (sei es begleitend zum Experiment oder als Start in eine Vertiefung dieser Theorie). | |||||||||||||||||||||||||||||||||||||||||
Inhalt | Grundlegende Konzepte der Vielteilchen-Quantenmechanik. Entwicklung der Mehrelektronentheorie für Atome und Moleküle; beginnend bei der harmonischen Näherung für das Kern-Problem und bei der Hartree-Fock-Theorie für das elektronische Problem über Moeller-Plesset-Störungstheorie und Konfigurationswechselwirkung zu Coupled-Cluster und Multikonfigurationsverfahren. Dichtefunktionaltheorie. Verwendung quantenchemischer Software und Problemlösungen mit dem Computer. | |||||||||||||||||||||||||||||||||||||||||
Skript | Ein Skript zu allen Vorlesungsstunden wird zur Verfügung gestellt (die aufgearbeitete Theorie wird durch praktische Beispiele kontinuierlich begleitet). Sämtliche Informationen zur Vorlesung, sowie die links zum Online-Streaming werden auf dieser Webseite bekanntgegeben: https://reiher.ethz.ch/courses-and-seminars/exercises/QC_2023.html | |||||||||||||||||||||||||||||||||||||||||
Literatur | Lehrbücher: F.L. Pilar, Elementary Quantum Chemistry, Dover Publications I.N. Levine, Quantum Chemistry, Prentice Hall Hartree-Fock in Basisdarstellung: A. Szabo and N. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, McGraw-Hill Bücher zur Computerchemie: F. Jensen, Introduction to Computational Chemistry, John Wiley & Sons C.J. Cramer, Essentials of Computational Chemistry, John Wiley & Sons | |||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Voraussetzungen: einführende Vorlesung in Quantenmechanik (z.B. Physikalische Chemie III: Quantenmechanik) | |||||||||||||||||||||||||||||||||||||||||
227-0161-00L | Molecular and Materials Modelling | W | 6 KP | 2V + 2U | D. Passerone, C. Pignedoli | |||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course introduces the basic techniques to interpret experiments with contemporary atomistic simulation, including force fields or ab initio based molecular dynamics and Monte Carlo. Structural and electronic properties will be simulated hands-on for realistic systems. The modern methods of "big data" analysis applied to the screening of chemical structures will be introduced with examples. | |||||||||||||||||||||||||||||||||||||||||
Lernziel | The ability to select a suitable atomistic approach to model a nanoscale system, and to employ a simulation package to compute quantities providing a theoretically sound explanation of a given experiment. This includes knowledge of empirical force fields and insight in electronic structure theory, in particular density functional theory (DFT). Understanding the advantages of Monte Carlo and molecular dynamics (MD), and how these simulation methods can be used to compute various static and dynamic material properties. Basic understanding on how to simulate different spectroscopies (IR, X-ray, UV/VIS). Performing a basic computational experiment: interpreting the experimental input, choosing theory level and model approximations, performing the calculations, collecting and representing the results, discussing the comparison to the experiment. | |||||||||||||||||||||||||||||||||||||||||
Inhalt | -Classical force fields in molecular and condensed phase systems -Methods for finding stationary states in a potential energy surface -Monte Carlo techniques applied to nanoscience -Classical molecular dynamics: extracting quantities and relating to experimentally accessible properties -From molecular orbital theory to quantum chemistry: chemical reactions -Condensed phase systems: from periodicity to band structure -Larger scale systems and their electronic properties: density functional theory and its approximations -Advanced molecular dynamics: Correlation functions and extracting free energies -The use of Smooth Overlap of Atomic Positions (SOAP) descriptors in the evaluation of the (dis)similarity of crystalline, disordered and molecular compounds | |||||||||||||||||||||||||||||||||||||||||
Skript | A script will be made available and complemented by literature references. | |||||||||||||||||||||||||||||||||||||||||
Literatur | D. Frenkel and B. Smit, Understanding Molecular Simulations, Academic Press, 2002. M. P. Allen and D.J. Tildesley, Computer Simulations of Liquids, Oxford University Press 1990. C. J. Cramer, Essentials of Computational Chemistry. Theories and Models, Wiley 2004 G. L. Miessler, P. J. Fischer, and Donald A. Tarr, Inorganic Chemistry, Pearson 2014. K. Huang, Statistical Mechanics, Wiley, 1987. N. W. Ashcroft, N. D. Mermin, Solid State Physics, Saunders College 1976. E. Kaxiras, Atomic and Electronic Structure of Solids, Cambridge University Press 2010. | |||||||||||||||||||||||||||||||||||||||||
Fluiddynamik | ||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||
151-0208-00L | Computational Methods for Flow, Heat and Mass Transfer Problems | W | 4 KP | 4G | D. W. Meyer-Massetti | |||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Es werden numerische Methoden zur Lösung von Problemen der Fluiddynamik, Energie- & Verfahrenstechnik dargestellt und anhand von analytischen & numerischen Beispielen illustriert. Die Lehrveranstaltung wird im flipped classroom Format durchgeführt. | |||||||||||||||||||||||||||||||||||||||||
Lernziel | Kenntnisse und praktische Erfahrung mit der Anwendung von Diskretisierungs- und Lösungsverfahren für Problem der Fluiddynamik und der Energie- und Verfahrenstechnik | |||||||||||||||||||||||||||||||||||||||||
Inhalt | - Einleitung mit Anwendungen, Schritte zur numerischen Lösung - Klassifizierung partieller Differentialgleichungen, Beispiele aus Anwendungen - Finite Differenzen - Finite Volumen - Methoden der gewichteten Residuen, Spektralmethoden, finite Elemente - Randelementmethode - Stabilitätsanalyse, Konsistenz, Konvergenz - Numerische Lösungsverfahren, lineare Löser Der Stoff wird mit Beispielen aus der Praxis illustriert. | |||||||||||||||||||||||||||||||||||||||||
Skript | Folien und ein Skript werden ausgegeben. | |||||||||||||||||||||||||||||||||||||||||
Literatur | Referenzen werden in der Vorlesung angegeben. | |||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Grundlagen in Fluiddynamik, Thermodynamik und Programmieren (Vorlesung: "Models, Algorithms and Data: Introduction to Computing") | |||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
|
- Seite 1 von 5 Alle