Search result: Catalogue data in Autumn Semester 2022
Health Sciences and Technology Bachelor | ||||||||||||||||||||||||||||||
Bachelor Studies (Programme Regulations 2020) | ||||||||||||||||||||||||||||||
Second and Third Year Core Courses | ||||||||||||||||||||||||||||||
Examination Blocks | ||||||||||||||||||||||||||||||
Examination Block A | ||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
376-0151-00L | Anatomy and Physiology I | O | 5 credits | 4V | D. P. Wolfer, K. De Bock, L. Slomianka, C. Spengler, M. Willecke | |||||||||||||||||||||||||
Abstract | Basic knowledge of the anatomy and physiology of tissues, of the embryonal and postnatal development, the sensory organs, the neuro-muscular system, the cardiovascular system and the respiratory system. | |||||||||||||||||||||||||||||
Learning objective | Basic knowledge of human anatomy and physiology and basics of clinical pathophysiology. | |||||||||||||||||||||||||||||
Content | The lecture series provides a short overview of human anatomy and physiology Anatomy and Physiology I (fall term): Basics of cytology, histology, embryology; nervous system, sensory organs, muscles, cardiovascular system, respiratory system Anatomy and Physiology II (spring term): digestive tract, endocrine organs, metabolism and thermoregulation, skin, blood and immune system, urinary system, circadian rhythm, reproductive organs, pregnancy and birth. | |||||||||||||||||||||||||||||
Prerequisites / Notice | Requirements: 1st year, scientific part. Part of the course is read and checked in English. | |||||||||||||||||||||||||||||
401-0293-00L | Mathematics III | O | 5 credits | 3V + 2U | A. Caspar, N. Hungerbühler | |||||||||||||||||||||||||
Abstract | Vertiefung der mehrdimensionalen Analysis mit Schwerpunkt in der Anwendung der partiellen Differentialgleichungen, Vertiefung der Linearen Algebra und Einführung in die Systemanalyse und Modellbildung. | |||||||||||||||||||||||||||||
Learning objective | Die Studierenden - verstehen Mathematik als Sprache zur Modellbildung und als Werkzeug zur Lösung angewandter Probleme in den Naturwissenschaften. - können anspruchsolle Modelle analysieren, Lösungen qualitativ beschreiben oder allenfalls explizit berechnen: diskret/kontinuierlich in Zeit, Ebene und Raum. - können Beispiele und konkrete arithmetische und geometrische Situationen aus Anwendungen mit Methoden der höheren Mathematik interpretieren und bearbeiten. | |||||||||||||||||||||||||||||
Content | Einführung Modellbildung - SIR-Modelle: Ausbreitung von Krankheiten bei Epidemien - Pocken-Modell: Was ist der Effekt von Impfungen? Lineare Modelle - Vektorräume - Lösungsraum eines Linearen DGL-Systems - Diagonalisierbarkeit und Normalformen - Exponential einer Matrix Fourier-Reihen - Euklidische Vektorräume - Orthogonale Projektion - Anwendungen Nichtlineare Modelle - Stationäre Lösungen, Qualitative Aussagen - Mehrdimensionale Modelle: Räuber-Beute, Lotka-Volterra Partielle Differentialgleichungen: Vorgänge, die von Raum und Zeit anhängen - Einführung, Repetition, Beispiele - Fourier-Methoden: Wärmeleitung, Laplace, Wellengleichung, Filter, Computertomographie Laplace-Transformation - Definition und Notation - Rechenregeln - Anwendungsbeispiele | |||||||||||||||||||||||||||||
Lecture notes | Buch: "Mathematische Modellbildung in den Life Sciences", A. Caspar und N. Hungerbühler | |||||||||||||||||||||||||||||
Literature | - Buch: "Mathematische Modellbildung in den Life Sciences", A. Caspar und N. Hungerbühler - Blatter, C.: Lineare Algebra für Ingenieure, Chemiker und Naturwissenschafter. | |||||||||||||||||||||||||||||
Prerequisites / Notice | Vorlesungen Mathematik I/II | |||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||
401-0643-13L | Statistics II | O | 3 credits | 2V + 1U | J. Dambon | |||||||||||||||||||||||||
Abstract | Vertiefung von Statistikmethoden. Nach dem detailierten Fundament aus Statistik I liegt nun der Fokus auf konzeptueller Breite und konkreter Problemlösungsfähigkeit mit der Statistiksoftware R. | |||||||||||||||||||||||||||||
Learning objective | Nach diesem Kurs können Sie mit der Statistiksoftware R Daten einlesen, auf vielfältige Art verarbeiten und Grafiken für Berichte oder Vorträge exportieren. Sie verstehen die Konzepte von Methoden wie Lineare Regression (mit Faktoren, Interaktion, Modellwahl), ANOVA (1-weg, 2-weg), Chi-Quadrat-Test, Fisher-Test, GLMs, Mixed Models, Clustering, PCA und können diese mit der Statistiksoftware R in der Praxis umsetzen. Zudem kennen Sie die Grundprinzipien von gutem experimentellem Design und können bestehende Studien kritisch hinterfragen. | |||||||||||||||||||||||||||||
Examination Block B | ||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||
402-0083-00L | Physics I | O | 4 credits | 3V + 1U | K. S. Kirch | |||||||||||||||||||||||||
Abstract | This course is an introduction to classical physics, with special focus on applications in medicine. | |||||||||||||||||||||||||||||
Learning objective | Obtain an understanding of basic concepts in classical physics and their application (using mathematical pre-knowledge) to the solution of simple problems, including certain applications in medicine. Obtain an understanding of relevant quantities and of orders of magnitude. | |||||||||||||||||||||||||||||
Content | General introduction; Positron-Emission-Tomography as appetizer, including ionising radiation; kinematics of a point mass; dynamics of a point mass (Newton's axioms and forces); physical work, power and energy; conservation of linear and angular momentum; oscillations and waves; mechanics of a rigid body; fluid mechanics; introduction to electricity. | |||||||||||||||||||||||||||||
Lecture notes | Will be distributed at the start of the semester. | |||||||||||||||||||||||||||||
Literature | "Physik für Mediziner, Biologen, Pharmazeuten", von Alfred Trautwein, Uwe Kreibig, Jürgen Hüttermann; De Gruyter Verlag. | |||||||||||||||||||||||||||||
Prerequisites / Notice | Voraussetzung Mathematik I+II (Studiengänge Gesundheitswissenschaften und Technologie bzw. Humanmedizin) / Mathematik-Lehrveranstaltungen des Basisjahres (Studiengänge Chemie, Chemieingenieurwissenschaften bzw. Interdisziplinäre Naturwissenschaften) | |||||||||||||||||||||||||||||
Examination Block C only offered in spring semester. | ||||||||||||||||||||||||||||||
Individual Subjects and Laboratory Courses | ||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||
376-0019-00L | Laboratory Course in Medical Technology Only for BSc HST students. Students from other degree programmes please contact: hcooper@ethz.ch | O | 2 credits | 2P | J. G. Snedeker | |||||||||||||||||||||||||
Abstract | This practical course is designed to give students hands on experience in CAD, FEM, product optimization, mechanical load testing, software development and hardware utilization in robotics. | |||||||||||||||||||||||||||||
Learning objective | The course aims at teaching and solidifying following topics: CAD FEM Product optimization Mechanical testing Software development Hardware usage in robotics | |||||||||||||||||||||||||||||
Content | The course is aimed at improving the students knowledge on certain topics such as programming in python and biomechanics, but also teaches new skills such as using CAD software, FEM and mechanical testing. The course is split into 6 sessions, which will be completed in groups. The students will be assigned to groups at the beginning of the semester. 4 of the experiments will be geared towards the use case of designing a bone plate to bridge a critical size gap of a femur. The experiments are therefore 1) using CAD to reconstruct the initial condition and the bone plate 2) running a FEM in order to analyze the performance of the bone plate 3) with the knowledge of the FEM, optimizing the bone plate and 4) testing of the designed bone plate, the bone plate will be 3D printed. The remaining 2 experiments will 1) focus on programming a robotic arm used in rehabilitation engineering and 2) on the hardware usage of the robotic arm including force sensors and EMG. | |||||||||||||||||||||||||||||
Lecture notes | Each of the 6 sessions has its own tutorial and will be handed out to the students. | |||||||||||||||||||||||||||||
Prerequisites / Notice | Only motivation and curiosity is required. | |||||||||||||||||||||||||||||
376-0002-01L | Product Design in Medical Engineering | O | 4 credits | 2V + 2U | S. J. Ferguson | |||||||||||||||||||||||||
Abstract | This course will provide insight into various aspects of medical device design such as patient needs assessment, product specification, research and technical design, validation, regulatory affairs and clinical evaluation. | |||||||||||||||||||||||||||||
Learning objective | The goal of this lecture series is to enable the students to (i) identify the principal functional requirements for a medical device, (ii) to understand the mechanical properties of natural tissues and synthetic biomaterials, (iii) to apply this information and a basic knowledge of mechanics in the calculation of implant performance, (iv) to develop a plan for the pre-clinical evaluation and regulation of a new device. | |||||||||||||||||||||||||||||
Content | 1. Introduction to Medical Technology 2. Design Process 3. Mechanics 4. Mechanics of Materials 5. Tissue Mechanics 6. Prostheses: Biomechanics and Design 7. Prostheses: Biomaterials, Surfaces and Wear 8. Allografts: Heart Valves 9. Preclinical Evaluation 10. Regulatory Affairs (MepV, FDA, CE) 11. Intellectual Property 12. Group Work and Presentation | |||||||||||||||||||||||||||||
Lecture notes | https://moodle-app2.let.ethz.ch/course/view.php?id=180 |
- Page 1 of 1