Search result: Catalogue data in Autumn Semester 2022
Electrical Engineering and Information Technology Master | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Master Studies (Programme Regulations 2018) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Energy and Power Electronics The core courses and specialisation courses below are a selection for students who wish to specialise in the area of "Energy and Power Electronics", see https://www.ee.ethz.ch/studies/main-master/areas-of-specialisation.html. The individual study plan is subject to the tutor's approval. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Core Courses These core courses are particularly recommended for the field of "Energy and Power Electronics". You may choose core courses form other fields in agreement with your tutor. A minimum of 24 credits must be obtained from core courses during the MSc EEIT. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Foundation Core Courses Fundamentals at bachelor level, for master students who need to strengthen or refresh their background in the area. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
227-0113-00L | Power Electronics | W | 6 credits | 4G | J. W. Kolar | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Fields of application of power electronic converters; basic concept of switch-mode voltage and current conversion; derivation of circuit structures of non-isolated and isolated DC/DC converters, AC/DC- and DC/AC converter structures; analysis procedure and analysis of the operating behaviour and operating range; design criteria and design of main power components. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Fields of application of power electronic converters; basic concept of switch-mode voltage and current conversion; derivation of circuit structures of non-isolated and isolated DC/DC converters, AC/DC- and DC/AC converter structures; analysis procedure and analysis of the operating behaviour and operating range; design criteria and design of main power components. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Fields of application and application examples of power electronic converters, basic concept of switch-mode voltage and current conversion, pulse-width modulation (PWM); derivation and operating modes (continuous and discontinuous current mode) of DC/DC converter topologies, buck / boost / buck-boost converter; extension to DC/AC conversion using differences of unipolar output voltages varying over time; single-phase diode rectifier; boost-type PWM rectifier featuring sinusoidal input current; tolerance band AC current control and cascaded output voltage control with inner constant switching frequency current control; local and global averaging of switching frequency discontinuous quantities for calculation of component stresses; three-phase AC/DC conversion, center-tap rectifier with impressed output current, thyristor function, thyristor center-tap and full-bridge converter, rectifier and inverter operation, control angle and recovery time, inverter operation limit; basics of inductors and single-phase transformers, design based on scaling laws; Isolated DCDC converter, flyback and forward converter, single-switch and two-switch circuit; single-phase DC/AC conversion, four-quadrant converter, unipolar and bipolar modulation, fundamental frequency model of AC-side operating behaviour; three-phase DC/AC converter with star-connected three-phase load, zero sequence (common-mode) and current forming differential-mode output voltage components, fundamental frequency modulation and PWM with singe triangular carrier and individual carrier signals of the phases. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes and associated exercises including correct answers, simulation program for interactive self-learning including visualization/animation features. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisites: Basic knowledge of electrical engineering / electric circuit analysis and signal theory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0517-10L | Fundamentals of Electric Machines | W | 6 credits | 4G | D. Bortis, R. Bosshard | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course introduces to different electric machine concepts and provides a deeper understanding of their detailed operating principles. Different aspects arising in the design of electric machines, like dimensioning of magnetic and electric circuits as well as consideration of mechanical and thermal constraints, are investigated. The exercises are used to consolidate the concepts discussed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The objective of this course is to convey knowledge on the operating principles of different types of electric machines. Further objectives are to evaluate machine types for given specifications and to acquire the ability to perform a rough design of an electrical machine while considering the versatile aspects with respect to magnetic, electrical, mechanical and thermal limitations. Exercises are used to consolidate the presented theoretical concepts. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | ‐ Fundamentals in magnetic circuits and electromechanical energy conversion. ‐ Force and torque calculation. ‐ Operating principles, magnetic and electric modelling and design of different electric machine concepts: DC machine, AC machines (permanent magnet synchronous machine, reluctance machine and induction machine). ‐ Complex space vector notation, rotating coordinate system (dq-transformation). ‐ Loss components in electric machines, scaling laws of electromechanical actuators. ‐ Mechanical and thermal modelling. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes and associated exercises including correct answers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Advanced Core Courses Advanced core courses bring students to gain in-depth knowledge of the chosen specialization. They are MSc level only. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0117-00L | High Voltage Engineering | W | 6 credits | 4G | C. Franck, U. Straumann | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | High electric fields are used in numerous technological and industrial applications such as electric power transmission and distribution, X-ray devices, DNA sequencers, flue gas cleaning, power electronics, lasers, particle accelerators, copying machines, .... High Voltage Engineering is the art of gaining technological control of high electrical field strengths and high voltages. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The students know the fundamental phenomena and principles associated with the occurrence of high electric field strengths. They understand the different mechanisms leading to the failure of insulation systems and are able to apply failure criteria on the dimensioning of high voltage components. They have the ability to identify of weak spots in insulation systems and to propose options for improvement. Further, they know the different insulation systems and their dimensioning in practice. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | - discussion of the field equations relevant for high voltage engineering. - analytical and numerical solutions/solving of this equations, as well as the derivation of the important equivalent circuits for the description of the fields and losses in insulations - introduction to kinetic gas theory - mechanisms of the breakdown in gaseous, liquid and solid insulations, as well as insulation systems - methods for the mathematical determination of the electric withstand of gaseous, liquid and solid insulations - application of the expertise on high voltage components - excursions to manufacturers of high voltage components | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture Slides | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | A. Küchler, High Voltage Engineering: Fundamentals – Technology – Applications, Springer Berlin, 2018 (ISBN 978-3-642-11992-7) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0247-00L | Power Electronic Systems I | W | 6 credits | 4G | J. Biela, F. Krismer | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Basics of the switching behavior, gate drive and snubber circuits of power semiconductors are discussed. Soft-switching and resonant DC/DC converters are analyzed in detail and high frequency loss mechanisms of magnetic components are explained. Space vector modulation of three-phase inverters is introduced and the main power components are designed for typical industry applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Detailed understanding of the principle of operation and modulation of advanced power electronics converter systems, especially of zero voltage switching and zero current switching non-isolated and isolated DC/DC converter systems and three-phase voltage DC link inverter systems. Furthermore, the course should convey knowledge on the switching frequency related losses of power semiconductors and inductive power components and introduce the concept of space vector calculus which provides a basis for the comprehensive discussion of three-phase PWM converters systems in the lecture Power Electronic Systems II. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Basics of the switching behavior and gate drive circuits of power semiconductor devices and auxiliary circuits for minimizing the switching losses are explained. Furthermore, zero voltage switching, zero current switching, and resonant DC/DC converters are discussed in detail; the operating behavior of isolated full-bridge DC/DC converters is detailed for different secondary side rectifier topologies; high frequency loss mechanisms of magnetic components of converter circuits are explained and approximate calculation methods are presented; the concept of space vector calculus for analyzing three-phase systems is introduced; finally, phase-oriented and space vector modulation of three-phase inverter systems are discussed related to voltage DC link inverter systems and the design of the main power components based on analytical calculations is explained. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes and associated exercises including correct answers. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisites: Introductory course on power electronics is recommended. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0517-10L | Fundamentals of Electric Machines | W | 6 credits | 4G | D. Bortis, R. Bosshard | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course introduces to different electric machine concepts and provides a deeper understanding of their detailed operating principles. Different aspects arising in the design of electric machines, like dimensioning of magnetic and electric circuits as well as consideration of mechanical and thermal constraints, are investigated. The exercises are used to consolidate the concepts discussed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The objective of this course is to convey knowledge on the operating principles of different types of electric machines. Further objectives are to evaluate machine types for given specifications and to acquire the ability to perform a rough design of an electrical machine while considering the versatile aspects with respect to magnetic, electrical, mechanical and thermal limitations. Exercises are used to consolidate the presented theoretical concepts. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | ‐ Fundamentals in magnetic circuits and electromechanical energy conversion. ‐ Force and torque calculation. ‐ Operating principles, magnetic and electric modelling and design of different electric machine concepts: DC machine, AC machines (permanent magnet synchronous machine, reluctance machine and induction machine). ‐ Complex space vector notation, rotating coordinate system (dq-transformation). ‐ Loss components in electric machines, scaling laws of electromechanical actuators. ‐ Mechanical and thermal modelling. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes and associated exercises including correct answers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0526-00L | Power System Analysis | W | 6 credits | 4G | G. Hug | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The goal of this course is understanding the stationary and dynamic problems in electrical power systems. The course includes the development of stationary models of the electrical network, their mathematical representation and special characteristics and solution methods of large linear and non-linear systems of equations related to electrical power networks. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The goal of this course is understanding the stationary and dynamic problems in electrical power systems and the application of analysis tools in steady and dynamic states. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course includes the development of stationary models of the electrical network, their mathematical representation and special characteristics and solution methods of large linear and non-linear systems of equations related to electrical power grids. Approaches such as the Newton-Raphson algorithm applied to power flow equations, superposition technique for short-circuit analysis, equal area criterion and nose curve analysis are discussed as well as power flow computation techniques for distribution grids. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Specialisation Courses These specialisation courses are particularly recommended for the area of "Energy and Power Electronics", but you are free to choose courses from any other field in agreement with your tutor. A minimum of 40 credits must be obtained from specialisation courses during the Master's Programme. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0101-00L | Discrete-Time and Statistical Signal Processing | W | 6 credits | 4G | H.‑A. Loeliger | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course is about some fundamental topics of digital signal processing with a bias towards applications in communications: discrete-time linear filters, inverse filters and equalization, DFT, discrete-time stochastic processes, elements of detection theory and estimation theory, LMMSE estimation and LMMSE filtering, LMS algorithm, Viterbi algorithm. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The course is about some fundamental topics of digital signal processing with a bias towards applications in communications. The two main themes are linearity and probability. In the first part of the course, we deepen our understanding of discrete-time linear filters. In the second part of the course, we review the basics of probability theory and discrete-time stochastic processes. We then discuss some basic concepts of detection theory and estimation theory, as well as some practical methods including LMMSE estimation and LMMSE filtering, the LMS algorithm, and the Viterbi algorithm. A recurrent theme throughout the course is the stable and robust "inversion" of a linear filter. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Discrete-time linear systems and filters: state-space realizations, z-transform and spectrum, decimation and interpolation, digital filter design, stable realizations and robust inversion. 2. The discrete Fourier transform and its use for digital filtering. 3. The statistical perspective: probability, random variables, discrete-time stochastic processes; detection and estimation: MAP, ML, Bayesian MMSE, LMMSE; Wiener filter, LMS adaptive filter, Viterbi algorithm. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture Notes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0103-00L | Control Systems | W | 6 credits | 2V + 2U | F. Dörfler | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Study of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Study of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Process automation, concept of control. Modelling of dynamical systems - examples, state space description, linearisation, analytical/numerical solution. Laplace transform, system response for first and second order systems - effect of additional poles and zeros. Closed-loop control - idea of feedback. PID control, Ziegler - Nichols tuning. Stability, Routh-Hurwitz criterion, root locus, frequency response, Bode diagram, Bode gain/phase relationship, controller design via "loop shaping", Nyquist criterion. Feedforward compensation, cascade control. Multivariable systems (transfer matrix, state space representation), multi-loop control, problem of coupling, Relative Gain Array, decoupling, sensitivity to model uncertainty. State space representation (modal description, controllability, control canonical form, observer canonical form), state feedback, pole placement - choice of poles. Observer, observability, duality, separation principle. LQ Regulator, optimal state estimation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | K. J. Aström & R. Murray. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, 2010. R. C. Dorf and R. H. Bishop. Modern Control Systems. Prentice Hall, New Jersey, 2007. G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Control of Dynamic Systems. Addison-Wesley, 2010. J. Lunze. Regelungstechnik 1. Springer, Berlin, 2014. J. Lunze. Regelungstechnik 2. Springer, Berlin, 2014. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisites: Signal and Systems Theory II. MATLAB is used for system analysis and simulation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0121-00L | Communication Systems Does not take place this semester. | W | 6 credits | 4G | to be announced | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Information Theory, Signal Space Analysis, Baseband Transmission, Passband Transmission, Example und Channel, Data Link Layer, MAC, Example Layer 2, Layer 3, Internet | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction into the fundamentals of digital communication systems. Selected examples on the application of the fundamental principles in existing and upcoming communication systems | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Covered are the lower three layer of the OSI reference model: the physical, the data link, and the network layer. The basic terms of information theory are introduced. After this, we focus on the methods for the point to point communication, which may be addressed elegantly and coherently in the signal space. Methods for error detection and correction as well as protocols for the retransmission of perturbed data will be covered. Also the medium access for systems with shared medium will be discussed. Finally, algorithms for routing and flow control will be treated. The application of the basic methods will be extensively explained using existing and future wireless and wired systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture Slides | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | [1] Simon Haykin, Communication Systems, 4. Auflage, John Wiley & Sons, 2001 [2] Andrew S. Tanenbaum, Computernetzwerke, 3. Auflage, Pearson Studium, 2003 [3] M. Bossert und M. Breitbach, Digitale Netze, 1. Auflage, Teubner, 1999 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0225-00L | Linear System Theory | W | 6 credits | 5G | J. Lygeros, A. Tsiamis | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The class is intended to provide a comprehensive overview of the theory of linear dynamical systems, stability analysis, and their use in control and estimation. The focus is on the mathematics behind the physical properties of these systems and on understanding and constructing proofs of properties of linear control systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students should be able to apply the fundamental results in linear system theory to analyze and control linear dynamical systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | - Proof techniques and practices. - Linear spaces, normed linear spaces and Hilbert spaces. - Ordinary differential equations, existence and uniqueness of solutions. - Continuous and discrete-time, time-varying linear systems. Time domain solutions. Time invariant systems treated as a special case. - Controllability and observability, duality. Time invariant systems treated as a special case. - Stability and stabilization, observers, state and output feedback, separation principle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Available on the course Moodle platform. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Sufficient mathematical maturity, in particular in linear algebra, analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0517-10L | Fundamentals of Electric Machines | W | 6 credits | 4G | D. Bortis, R. Bosshard | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course introduces to different electric machine concepts and provides a deeper understanding of their detailed operating principles. Different aspects arising in the design of electric machines, like dimensioning of magnetic and electric circuits as well as consideration of mechanical and thermal constraints, are investigated. The exercises are used to consolidate the concepts discussed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The objective of this course is to convey knowledge on the operating principles of different types of electric machines. Further objectives are to evaluate machine types for given specifications and to acquire the ability to perform a rough design of an electrical machine while considering the versatile aspects with respect to magnetic, electrical, mechanical and thermal limitations. Exercises are used to consolidate the presented theoretical concepts. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | ‐ Fundamentals in magnetic circuits and electromechanical energy conversion. ‐ Force and torque calculation. ‐ Operating principles, magnetic and electric modelling and design of different electric machine concepts: DC machine, AC machines (permanent magnet synchronous machine, reluctance machine and induction machine). ‐ Complex space vector notation, rotating coordinate system (dq-transformation). ‐ Loss components in electric machines, scaling laws of electromechanical actuators. ‐ Mechanical and thermal modelling. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes and associated exercises including correct answers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0523-00L | Railway Systems I | W | 6 credits | 4G | M. Meyer | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Basic characteristis of railway vehicles and their interfaces with the railway infrastructure: - Transportation tasks and vehicle types - Running dynamics - Mechanical part of rail vehicles - Brakes - Traction chain and auxiliary supply - Railway power supply - Signalling systems - Standards - Availability and safety - Traffic control and maintenance | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | - Overview of the technical characteristics of railway systems - Know-how about the design and construction principles of rail vehicles - Interrelationship between different fields of engineering sciences (mechanics, electro and information technology, transport systems) - Understanding tasks and opportunities of engineers working in an environment which has strong economical and political boundaries - Insight into the activities of the railway vehicle industry and railway operators in Switzerland - Motivation of young engineers to start a career in the railway industry or with railway operators | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | EST I (Herbstsemester) - Begriffen, Grundlagen, Merkmale 1 Einführung: 1.1 Geschichte und Struktur des Bahnsystems 1.2 Fahrdynamik 2 Vollbahnfahrzeuge: 2.3 Mechanik: Kasten, Drehgestelle, Lauftechnik, Adhäsion 2.2 Bremsen 2.3 Traktionsantriebssysteme 2.4 Hilfsbetriebe und Komfortanlagen 2.5 Steuerung und Regelung 3 Infrastruktur: 3.1 Fahrweg 3.2 Bahnstromversorgung 3.3 Sicherungsanlagen 4 Betrieb: 4.1 Interoperabilität, Normen und Zulassung 4.2 RAMS, LCC 4.3 Anwendungsbeispiele Voraussichtlich ein oder zwei Gastreferate Geplante Exkursionen: Betriebszentrale SBB, Zürich Flughafen Reparatur und Unterhalt, SBB Zürich Altstetten Fahrzeugfertigung, Stadler Bussnang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Abgabe der Unterlagen (gegen eine Schutzgebühr) zu Beginn des Semesters. Rechtzeitig eingschriebene Teilnehmer können die Unterlagen auf Wunsch und gegen eine Zusatzgebühr auch in Farbe beziehen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Dozent: Dr. Markus Meyer, Emkamatik GmbH Voraussichtlich ein oder zwei Gastvorträge von anderen Referenten. EST I (Herbstsemester) kann als in sich geschlossene einsemestrige Vorlesung besucht werden. EST II (Frühjahrssemester) dient der weiteren Vertiefung der Fahrzeugtechnik und der Integration in die Bahninfrastruktur. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0536-00L | Multiphysics Simulations for Power Systems This course is defined so and planned to be an addition to the module "227-0537-00L Technology of Electric Power System Components". However, the students who are familiar with the fundamentals of electromagnetic fields could attend only this course without its 227-0537-00-complement. | W | 4 credits | 2V + 2U | J. Smajic | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The goals of this course are a) understanding the fundamentals of the electromagnetic, thermal, mechanical, and coupled field simulations and b) performing effective simulations of primary equipment of electric power systems. The course is understood complementary to 227-0537-00L "Technology of Electric Power System Components", but can also be taken separately. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The student should learn the fundamentals of the electromagnetic, thermal, mechanical, and coupled fields simulations necessary for modern product development and research based on virtual prototyping. She / he should also learn the theoretical background of the finite element method (FEM) and its application to low- and high-frequency electromagnetic field simulation problems. The practical exercises of the course should be done by using one of the commercially available field simulation software (Infolytica, ANSYS, and / or COMSOL). After completing the course the student should be able to properly and efficiently use the software to simulate practical design problems and to understand and interpret the obtained results. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Elektromagnetic Fields and Waves: Simulation Aspects (1 lecture, 2 hours) a. Short review of the governing equations b. Boundary conditions c. Initial conditions d. Linear and nonlinear material properties e. Coupled fields (electro-mechanical and electro-thermal coupling) 2. Finite Element Method for elektromagnetic simulations (5 lectures and 3 exercises, 16 hours) a. Scalar-FEM in 2-D (electrostatic, magnetostatic, eddy-currents, etc.) b. Vector-FEM in 3-D (3-D eddy-currents, wave propagation, etc.) c. Numerical aspects of the analysis (convergence, linear solvers, preconditioning, mesh quality, etc.) d. Matlab code for 2-D FEM for learning and experimenting 3. Practical applications (5 lectures and 5 exercises, 20 hours) a. Dielectric analysis of high-voltage equipment b. Nonlinear quasi-electrostatic analysis of surge arresters c. Eddy-currents analysis of power transformers d. Electromagnetic analysis of electric machines e. Very fast transients in gas insulated switchgears (GIS) f. Electromagnetic compatibility (EMC) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0567-00L | Design of Power Electronic Systems | W | 6 credits | 4G | F. Krismer | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Complete design process: from given specifications to a complete power electronic system; selection / design of suitable passive power components; static and dynamic properties of power semiconductors; optimized EMI filter design; heat sink optimization; additional circuitry, e.g. gate driver; system optimization. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Basic knowledge of design and optimization of a power electronic system; furthermore, lecture and exercises thoroughly discuss key subjects of power electronics that are important with respect to a practical realization, e.g. how to select suitable power components, to understand switching operations, calculation of high frequency losses, EMI filter design and realization, thermal considerations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Complete design process: from given specifications to a complete power electronic system. Selection and / or design of suitable passive power components: specific properties, parasitic components, tolerances, high frequency losses, thermal considerations, reliability. Static and dynamic characteristics of power semiconductors. Optimized design of the EMI filter. Thermal characterization of the converter, optimized heat sink design. Additional circuitry: gate driver, measurement, control. Converter start up: typical sequence of events, circuitry required. Overall system optimization: identifying couplings between different components of the considered power electronic system, optimization targets and issues. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes and complementary exercises including correct answers. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisites: Introductory course on power electronics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0617-00L | Solar Cells | W | 4 credits | 3G | A. N. Tiwari, R. Carron, Y. Romanyuk | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Physics, technology, characteristics and applications of photovoltaic solar cells. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction to solar radiation, physics, technology, characteristics and applications of photovoltaic solar cells and systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Solar radiation characteristics, physical mechanisms for the light to electrical power conversion, properties of semiconductors for solar cells, processing and properties of conventional Si and GaAs based solar cells, technology and physics of thin film solar cells based on compound semiconductors, other solar cells including organic and dye sensitized cells, problems and new developments for power generation in space, interconnection of cells and solar module design, measurement techniques, system design of photovoltaic plants, system components such as inverters and controllers, engineering procedures with software domonstration, integration in buildings and other specific examples. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture reprints (in english). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisites: Basic knowledge of semiconductor properties. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0618-00L | Modeling, Characterization and Reliability of Power Semiconductors | W | 6 credits | 4G | M. P. M. Ciappa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This lecture provides theoretical and experimental knowledge on the techniques for the characterization and numerical modeling of power semiconductors, as well on the related built-in reliability strategies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The students shall get acquainted with the most important concepts and techniques for characterization, numerical modeling and built-in reliability of modern power semiconductor devices. This knowledge is intended to provide the future engineer with the theoretical background and tools for the design of dependable power devices and systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This lecture consists of a theoretical part (50%) and of laboratory exercises and demonstrations (50%). The theoretical part covers the basic techniques and procedures for characterization, modeling and built-in reliability of modern power semiconductor devices with special attention to MOS and IGBT. The starting part on technology provides an overview on the main device families and includes a review of the most relevant application-oriented aspects of the device physics, thermal management, and packaging. The second section deals with the basic experimental characterization techniques for the definition of the semiconductor material properties, electrical characteristics, safe operating area, and junction temperature of the devices. The following section introduces the basic principles for electrical, thermal, and electro-thermal simulation of power semiconductors by Technology Computed Aided Design (TCAD) and compact modeling. Finally, procedures are methods are presented to implement efficient built-in reliability programs targeted on power semiconductors. They include failure physics, dedicated failure analysis techniques, accelerated testing, defect screening, and lifetime modeling. During the laboratory activities, selections of the experimental techniques presented in the lecture are demonstrated on the base of realistic examples. Furthermore, schematic power devices will be simulated by the students with advanced TCAD tools and circuit simulators. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Handouts to the lecture (approx. 250 pp.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Eiichi Ohno: "Introduction to Power Electronics" B. Murari et al.: "Smart Power ICs" B. J. Baliga: "Physics Modern Power Devices" S. K. Ghandi: "Semiconductor Power Devices" | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0619-00L | Charge Transport in Energy Conversion and Storage Devices | W | 6 credits | 2V + 2U | C. Battaglia, A. Senocrate | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The students will be introduced to the fundamental concepts of charge transport in solar cells, batteries, and electrolysers. Emphasizing analogies between semiconductor physics and electrochemistry, this course is designed to provide a unified modern perspective of energy conversion and storage concepts for students in electrical engineering, materials science, physics, and chemistry. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | By the end of this course, the students will (1) understand the fundamentals of electronic and ionic charge transport, (2) understand the operational principles of solar cells, batteries, and electrolysers, and (3) understand fundamental limits for each device type. In addition, the students will learn how to simulate these devices during guided exercise sessions and develop an intuitive understanding on how to interpret the most important device characteristics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | P. Würfel, Physics of Solar Cells: From Principles to New Concepts, DOI:10.1002/9783527618545 J. Newman, Electrochemical Systems, ISBN 978-1-119-51460-2 R. Huggins, Advanced Batteries, DOI:10.1007/9780387764245 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Be motivated to change the world to renewable energies! Elements of calculus will be reviewed at the beginning of the course, but we leave the hard work of solving coupled differential charge transport equations to the computer and focus on developing a strong intuition. Prior knowledge in semiconductor physics or electrochemistry is an advantage, but not a prerequisite. Students are required to bring a windows-compatible computer with a common data analysis software to the exercises. Apps for simulating devices under different operating conditions will be made available to the students. A visit to a solar cell or battery fab will be organized during the semester if the epidemiological situation permits. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0697-00L | Industrial Process Control | W | 4 credits | 3G | A. Horch, L. Dominguez Palomeque | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to industrial automation systems with application to the process industry, power generation as well as discrete manufacturing. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | General understanding of industrial automation systems in different industries. Purpose, architecture, technologies, application examples, current and future trends. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Introduction to process automation: system architecture, data handling, communication (fieldbuses), process visualization, and engineering. Differences and characteristics of discrete and process industries. Analysis and design of open loop control problems: discrete automata, finite state machines, decision tables, and petri-nets. Practical analysis and design of closed-loop control for the process industry. Automation Engineering: Application programming in IEC 61131-3 (ladder diagrams, function blocks, sequence control, structured text); PLC programming and simulation, process visualization and operation; engineering integration from sensors, cabling, topology design, function, visualization, diagnosis, to documentation; Industry standards (e.g. OPC, Profibus); Ergonomic design, safety (IEC61508) and availability, supervision and diagnosis. Automation standards: Communication, Architecture, Engineering, dependable systems, functional safety, automation security. Extensive practical examples from different process industries, power generation, gas compressor control, and automotive manufacturing. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Slides will be available as .PDF documents, see "Learning materials" (for registered students only) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | References will be given at the end of individual lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Exercises: Tuesday 15-16 Practical exercises will illustrate some topics, e.g. some control software coding using industry standard programming tools based on IEC61131-3. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0731-00L | Power Market I - Portfolio and Risk Management | W | 6 credits | 4G | D. Reichelt, G. A. Koeppel | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Portfolio and risk management in the electrical power business, Pan-European power market and trading, futures and forward contracts, hedging, options and derivatives, performance indicators for the risk management, modelling of physical assets, cross-border trading, ancillary services, balancing power market, Swiss market model. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Knowlege on the worldwide liberalisation of electricity markets, pan-european power trading and the role of power exchanges. Understand financial products (derivatives) based on power. Management of a portfolio containing physical production, contracts and derivatives. Evaluate trading and hedging strategies. Apply methods and tools of risk management. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Pan-European power market and trading 1.1. Power trading 1.2. Development of the European power markets 1.3. Energy economics 1.4. Spot and OTC trading 1.5. European energy exchange EEX 2. Market model 2.1. Market place and organisation 2.2. Balance groups / balancing energy 2.3. Ancillary services 2.4. Market for ancillary services 2.5. Cross-border trading 2.6. Capacity auctions 3. Portfolio and Risk management 3.1. Portfolio management 1 (introduction) 3.2. Forward and futures contracts 3.3. Risk management 1 (m2m, VaR, hpfc, volatility, cVaR) 3.4. Risk management 2 (PaR) 3.5. Contract valuation (HPFC) 3.6. Portfolio management 2 2.8. Risk Management 3 (enterprise wide) 4. Energy & Finance I 4.1. Options 1 – basics 4.2. Options 2 – hedging with options 4.3. Introduction to derivatives (swaps, cap, floor, collar) 4.4. Financial modelling of physical assets 4.5. Trading and hydro power 4.6. Incentive regulation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Handouts of the lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | 1 excursion per semester, 2 case studies, guest speakers for specific topics. Course Moodle: https://moodle-app2.let.ethz.ch/enrol/index.php?id=11636 |
- Page 1 of 1