Suchergebnis: Katalogdaten im Herbstsemester 2022
Maschineningenieurwissenschaften Bachelor ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() Fokus-Koordinator: Prof. Christoph Müller Für die erforderlichen 20 KP der Fokus-Vertiefung Energy, Flows and Processes müssen mindestens 2 Kernfächer (W+) (HS/FS) und mindestens 2 der Wahlfächer (HS/FS) gemäss der Präsentation der Fokus-Vertiefung Energy, Flows and Processes (siehe Link) gewählt werden. 1 Kurs kann frei aus dem gesamten Angebot aller D-MAVT Studiengänge (Bachelor und Master) gewählt werden. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
151-0123-00L | Experimental Methods for Engineers | W+ | 4 KP | 2V + 2U | D. J. Norris, F. Coletti, M. Lukatskaya, A. Manera, G. Nagamine Gomez, B. Schuermans, O. Supponen, M. Tibbitt | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course presents an overview of measurement tasks in engineering environments. Different concepts for the acquisition and processing of typical measurement quantities are introduced. Following an initial in-class introduction, laboratory exercises from different application areas (especially in thermofluidics, energy, and process engineering) are attended by students in small groups. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Introduction to various aspects of measurement techniques, with particular emphasis on thermo-fluidic, energy, and process-engineering applications. Understanding of various sensing technologies and analysis procedures. Exposure to typical experiments, diagnostics hardware, data acquisition, and processing. Study of applications in the laboratory. Fundamentals of scientific documentation and reporting. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | In-class introduction to representative measurement techniques in the research areas of the participating institutes (fluid dynamics, energy technology, process engineering) Student participation in 8-10 laboratory experiments (study groups of 3-5 students, dependent on the number of course participants and available experiments) Lab reports for all attended experiments have to be submitted by the study groups. A final exam evaluates the acquired knowledge individually. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Presentations, handouts, and instructions are provided for each experiment. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Holman, J.P. "Experimental Methods for Engineers," McGraw-Hill 2001, ISBN 0-07-366055-8 Morris, A.S. & Langari, R. "Measurement and Instrumentation," Elsevier 2011, ISBN 0-12-381960-4 Eckelmann, H. "Einführung in die Strömungsmesstechnik," Teubner 1997, ISBN 3-519-02379-2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Basic understanding in the following areas: - fluid mechanics, thermodynamics, heat and mass transfer - electrical engineering / electronics - numerical data analysis and processing (e.g. using MATLAB) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0293-00L | Combustion and Reactive Processes in Energy and Materials Technology | W+ | 4 KP | 2V + 1U + 2A | N. Noiray, F. Ernst, C. E. Frouzakis | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course will provide an introduction to the fundamentals and the applications of combustion in energy conversion and nanoparticles synthesis. The content is highly relevant for technologies which cannot be electrified such as long distance aviation and shipping, and which will more and more rely on carbon-neutral synthetic fuels. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The main learning objectives of this course are: 1. Understand the thermodynamic, fluid-dynamic and chemical kinetics fundamentals of combustion processes. 2. Predict relevant parameters for combustion systems, such as laminar and turbulent flame speeds, adiabatic flame temperature or quenching distance. 3. Understand the causal relations of relevant combustion parameters such as the pressure influence on the laminar flame speed. 4. Analyze the challenges of developing sustainable combustion technologies based on carbon-neutral synthetic fuels. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Reaction kinetics, fuel oxidation mechanisms, premixed and diffusion laminar flames, two-phase-flows, turbulence and turbulent combustion, pollutant formation, development of sustainable combustion technologies for power generation, shipping and aviation. Synthesis of materials in flame processes: particles, pigments and nanoparticles. Fundamentals of design and optimization of flame reactors, effect of reactant mixing on product characteristics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | No script available. Instead, material will be provided in lecture slides and the following text book (which can be downloaded for free) will be followed: J. Warnatz, U. Maas, R.W. Dibble, "Combustion:Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation", Springer-Verlag, 1997. Teaching language, assignments and lecture slides in English | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | J. Warnatz, U. Maas, R.W. Dibble, "Combustion:Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation", Springer-Verlag, 1997. I. Glassman, Combustion, 3rd edition, Academic Press, 1996. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0221-00L | Introduction to Modeling and Optimization of Sustainable Energy Systems | W | 4 KP | 4G | G. Sansavini, A. Bardow | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course introduces the fundamentals of energy system modeling for the analysis and the optimization of the energy system design and operations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | At the end of this course, students will be able to: - define and quantify the key performance indicators of sustainable energy systems; - select and apply appropriate models for conversion, storage and transport of energy; - develop mathematical models for the analysis, design and operations of multi-energy systems and solve them with appropriate mathematical tools; - select and apply methodologies for the uncertainty analysis on energy systems models; - apply the acquired knowledge to tackle the challenges of the energy transition. In the course "Introduction to Modeling and Optimization of Sustainable Energy Systems", the competencies of process understanding, system understanding, modeling, concept development, data analysis & interpretation and measurement methods are taught, applied and examined. Programming is applied. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The global energy transition; Key performance indicators of sustainable energy systems; Optimization models; Heat integration and heat exchanger networks; Life-cycle assessment; Models for conversion, storage and transport technologies; Multi-energy systems; Design, operations and analysis of energy systems; Uncertainties in energy system modeling. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture slides and supplementary documentation will be available online. Reference to appropriate book chapters and scientific papers will be provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0109-00L | Turbulent Flows | W | 4 KP | 2V + 1U | P. Jenny | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Inhalt - Laminare und turbulente Strömungen, Turbulenzentstehung - Statistische Beschreibung: Mittelung, Turbulenzenergie, Dissipation, Schliessungsproblem - Skalenbetrachtungen. Homogene isotrope Turbulenz, Korrelationen, Fourierzerlegung, Energiespektrum - Freie Turbulenz. Nachlauf, Freistrahl, Mischungsschicht - Wandturbulenz. Turbulente Grenzschicht, Kanalströmung - Turbulenzberechnung | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Die Vorlesung vermittelt einen Einblick in grundlegende physikalische Phänomene turbulenter Strömungen und in Gesetzmässigkeiten zu ihrer Beschreibung, basierend auf den strömungsmechanischen Grundgleichungen und daraus abgeleiteten Gleichungen. Grundlagen zur Berechnung turbulenter Strömungen und Elemente der Turbulenzmodellierung werden dargestellt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | - Eigenschaften laminarer, transitioneller und turbulenter Strömungen - Turbulenzbeeinflussung und Turbulenzentstehung, hydrodynamische Instabilität und Transition - Statistische Beschreibung: Mittelung, Gleichungen für mittlere Strömung, turbulente Schwankungen, Turbulenzenergie, Reynoldsspannungen, Dissipation. Schliessungsproblem - Skalenbetrachtungen. Homogene isotrope Turbulenz, Korrelationen, Fourierzerlegung, Energiespektrum, Gitterturbulenz - Freie Turbulenz. Nachlauf, Freistrahl, Mischungsschicht - Wandturbulenz. Turbulente Grenzschicht, Kanalströmung - Grundlagen zur Berechnung turbulenter Strömungen und Elemente der Turbulenzmodellierung (Wirbelzähigkeitsmodelle, k-epsilon-Modell). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture notes in English, zusätzliches schriftliches Begleitmaterial auf Deutsch | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | S.B. Pope, Turbulent Flows, Cambridge University Press, 2000 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0913-00L | Introduction to Photonics | W | 4 KP | 2V + 2U | R. Quidant, J. Ortega Arroyo | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course introduces students to the main concepts of optics and photonics. Specifically, we will describe the laws obeyed by optical waves and discuss how to use them to manipulate light. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Photonics, the science of light, has become ubiquitous in our lives. Control and manipulation of light is what enables us to interact with the screen of our smart devices and exchange large amounts of complex information. Photonics has also taken a preponderant role in cutting-edge science, allowing for instance to image nanospecimens, detect diseases or sense very tiny forces. The purpose of this course is three-fold: (i) We first aim to provide the fundamentals of photonics, establishing a solid basis for more specialised courses. (ii) Beyond theoretical concepts, our intention is to have students develop an intuition on how to manipulate light in practise. (iii) Finally, the course highlights how the taught concepts apply to modern research as well as to everyday life technologies (LCD screens, polarisation sun glasses, anti-reflection coating etc...). Content, including videos of laboratory experiments, has been designed to be approachable by students from a diverse set of science and engineering backgrounds. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | I- BASICS OF WAVE THEORY 1) General concepts 2) Differential wave equation 3) Wavefront 4) Plane waves and Fourier decomposition of optical fields 5) Spherical waves and Huygens-Fresnel principle II- ELECTROMAGNETIC WAVES 1) Maxwell equations 2) Wave equation for EM waves 3) Dielectric permittivity 4) Refractive index 5) Nonlinear optics 6) Polarisation and polarisation control III- PROPAGATION OF LIGHT 1) Waves at an interface 2) The Fresnel equations 3) Total internal reflection 4) Evanescent waves 5) Dispersion diagram IV- INTERFERENCES 1) General considerations 2) Temporal and spatial coherence 3) The Young double slit experiment 4) Diffraction gratings 5) The Michelson interferometer 6) Multi-wave interference 7) Antireflecting coating and interference filters 8) Optical holography V- LIGHT MANIPULATION 1) Optical waveguides 2) Photonic crystals 3) Metamaterials and metasurfaces 4) Optical cavities VI- INTRODUCTION TO OPTICAL MICROSCOPY 1) Basic concepts 2) Direct and Fourier imaging 3) Image formation 4) Fluorescence microscopy 5) Scattering-based microscopy 6) Digital holography 7) Computational imaging VII- OPTICAL FORCES AND OPTICAL TWEEZERS 1) History of optical forces 2) Theory of optical trapping 3) Atom cooling 4) Optomechanics 5) Plasmonic trapping 6) Applications of optical tweezers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Class notes and handouts | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Optics (Hecht) - Pearson | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Physics I, Physics II | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0917-00L | Mass Transfer | W | 4 KP | 2V + 2U | S. E. Pratsinis, V. Mavrantzas, C.‑J. Shih | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Fick's laws; application and significance of mass transfer; comparison of Fick's laws with Newton's and Fourier's laws; derivation of Fick's 2nd law; diffusion in dilute and concentrated solutions; rotating disk; dispersion; diffusion coefficients, viscosity and heat conduction (Pr and Sc numbers); Brownian motion; Stokes-Einstein equation; mass transfer coefficients (Nu and Sh numbers); mass transfer across interfaces; Analogies for mass-, heat-, and momentum transfer in turbulent flows; film-, penetration-, and surface renewal theories; simultaneous mass, heat and momentum transfer (boundary layers); homogeneous and heterogeneous reversible and irreversible reactions; diffusion-controlled reactions; mass transfer and first order heterogeneous reaction. Applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Cussler, E.L.: "Diffusion", 3nd edition, Cambridge University Press, 2009. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Students attending this highly-demanding course are expected to allocate sufficient time within their weekly schedule to successfully conduct the exercises. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0973-00L | Einführung in die Verfahrenstechnik | W | 4 KP | 2V + 2U | F. Donat, C. Müller | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Übersicht über die Verfahrenstechnik; Grundlagen und Aufgabenbereiche der Verfahrenstechnik; Prozessführung und Bilanzierung; Übersicht thermischer Trennverfahren und Mehrphasensystemen; Übersicht mechanischer Trennverfahren und granularer Systeme; Einführung in die Reaktionstechnik, Reaktoren und Verweilzeiten. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Wir vermitteln Grundlagen der Verfahrenstechnik anhand praxisnaher Beispiele sowie konkreter verfahrenstechnischen Problemstellungen in den Bereichen Prozessführung und Bilanzierung, thermische Trennverfahren, mechanische Trennverfahren und Reaktionstechnik. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Übersicht über die Verfahrenstechnik; Grundlagen und Aufgabenbereiche der Verfahrenstechnik; Prozessführung und Bilanzierung; Übersicht thermischer Trennverfahren und Mehrphasensystemen; Übersicht mechanischer Trennverfahren und granularer Systeme; Einführung in die Reaktionstechnik, Reaktoren und Verweilzeiten. Neben der Vermittlung theoretischer Grundkenntnisse liegt der Fokus auf der Lösung typischer Probleme in verschiedenen Unterdisziplinen der Verfahrenstechnik. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Ein Skript zur Vorlesung wird bereitgestellt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Weiterführende Literatur wird im Rahmen der Lehrveranstaltung bekanntgegeben. Für den erfolgreichen Abschluss der Lehrveranstaltung genügen das Vorlesungsskript, die Folien der Vorlesung sowie die Übungsunterlagen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() Fokus-Koordinator: Prof. Marco Hutter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0509-00L | Acoustics in Fluid Media: From Robotics to Additive Manufacturing Note: The previous course title until HS21 "Microscale Acoustofluidics" | W | 4 KP | 3G | D. Ahmed | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course will provide you with the fundamentals of the new and exciting field of ultrasound-based microrobots to treat various diseases. Furthermore, we will explore how ultrasound can be used in additive manufacturing for tissue constructs and robotics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The course is designed to equip students with skills in the design and development of ultrasound-based manipulation devices and microrobots for applications in medicine and additive manufacturing. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Linear and nonlinear acoustics, foundations of fluid and solid mechanics and piezoelectricity, Gorkov potential, numerical modelling, acoustic streaming, applications from ultrasonic microrobotics to surface acoustic wave devices | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Yes, incl. Chapters from the Tutorial: Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Solid and fluid continuum mechanics. Notice: The exercise part is a mixture of presentation, lab sessions ( both compulsary) and hand in homework. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Geförderte Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0575-01L | Signals and Systems ![]() | W | 4 KP | 2V + 2U | A. Carron | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Signals arise in most engineering applications. They contain information about the behavior of physical systems. Systems respond to signals and produce other signals. In this course, we explore how signals can be represented and manipulated, and their effects on systems. We further explore how we can discover basic system properties by exciting a system with various types of signals. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Master the basics of signals and systems. Apply this knowledge to problems in the homework assignments and programming exercise. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Discrete-time signals and systems. Fourier- and z-Transforms. Frequency domain characterization of signals and systems. System identification. Time series analysis. Filter design. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture notes available on course website. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Control Systems I is helpful but not required. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0601-00L | Theory of Robotics and Mechatronics ![]() Findet dieses Semester nicht statt. | W | 4 KP | 3G | Noch nicht bekannt | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course provides an introduction and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Robotics is often viewed from three perspectives: perception (sensing), manipulation (affecting changes in the world), and cognition (intelligence). Robotic systems integrate aspects of all three of these areas. This course provides an introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | An introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | available. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0604-00L | Microrobotics ![]() | W | 4 KP | 3G | B. Nelson | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Microrobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course, the students apply these concepts in assignments. The course concludes with an end-of-semester examination. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Main topics of the course include: - Scaling laws at micro/nano scales - Electrostatics - Electromagnetism - Low Reynolds number flows - Observation tools - Materials and fabrication methods - Applications of biomedical microrobots | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | The powerpoint slides presented in the lectures will be made available as pdf files. Several readings will also be made available electronically. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The lecture will be taught in English. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0621-00L | Microsystems I: Process Technology and Integration | W | 6 KP | 3V + 3U | M. Haluska, C. Hierold | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Die Stundenten werden in die Grundlagen der Mikrosystemtechnik, der Halbleiterphysik und der Halbleiterprozesstechnologie eingeführt und erfahren, wie die Herstellung von Mikrosystemen in einer Serie von genau definierten Prozessschritten erfolgt (Gesamtprozess und Prozessablauf). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Die Stundenten sind mit den Grundlagen der Mikrosystemtechnik und der Prozesstechnologie für Halbleiter vertraut und verstehen die Herstellung von Mikrosystemen durch die Kombination von Einzelprozesschritten ( = Gesamtprozess oder Prozessablauf). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | - Einführung in die Mikrosystemtechnik (MST) und in mikroelektromechanische Systeme (MEMS) - Grundlegende Siliziumtechnologie: thermische Oxidation, Fotolithografie und Ätztechnik, Diffusion und Ionenimplantation, Dünnschichttechnik. - Besondere Mikrosystemtechnologien: Volumen- und Oberflächenmikromechanik, Trocken- und Nassätzen, isotropisches und anisotropisches Ätzen, Herstellung von Balken und Membranen, Waferbonden, mechanische Eigenschaften von Dünnschichten. Die Anwendung ausgewählter Technologien wird anhand von Fallstudien nachgewiesen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Handouts (online erhältlich) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | - S.M. Sze: Semiconductor Devices, Physics and Technology - W. Menz, J. Mohr, O.Paul: Microsystem Technology - Hong Xiao: Introduction to Semiconductor Manufacturing Technology - M. J. Madou: Fundamentals of Microfabrication and Nanotechnology, 3rd ed. - T. M. Adams, R. A. Layton: Introductory MEMS, Fabrication and Applications | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Voraussetzung: Physik I und II | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0640-00L | Studies on Mechatronics ![]() Die Professoren, die Studies on Mechatronics betreuen, sind im myStudies bei Belegung des Fachs wählbar. Für Ausnahmen bitte den Fokus Koordinator und info@mavt.ethz.ch kontaktieren. Dieser Kurs steht für Austauschstudierende nicht zur Verfügung. | W | 5 KP | 11A | Betreuer/innen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Overview of Mechatronics topics and study subjects. Identification of minimum 10 pertinent refereed articles or works in the literature in consultation with supervisor or instructor. After 4 weeks, submission of a 2-page proposal outlining the value, state-of-the art and study plan based on these articles. After feedback on the substance and technical writing by the instructor, project commences. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The students are familiar with the challenges of the fascinating and interdisciplinary field of Mechatronics and Mikrosystems. They are introduced in the basics of independent non-experimental scientific research and are able to summarize and to present the results efficiently. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The students work independently on a study of selected topics in the field of Mechatronics or Microsystems. They start with a selection of scientific papers to continue literature research. The results (e.g. state-of-the-art, methods) are evaluated with respect to predefined criteria. Then the results are presented in an oral presentation and summarized in a report, which takes the discussion of the presentation into account. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | will be available | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0913-00L | Introduction to Photonics | W | 4 KP | 2V + 2U | R. Quidant, J. Ortega Arroyo | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course introduces students to the main concepts of optics and photonics. Specifically, we will describe the laws obeyed by optical waves and discuss how to use them to manipulate light. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Photonics, the science of light, has become ubiquitous in our lives. Control and manipulation of light is what enables us to interact with the screen of our smart devices and exchange large amounts of complex information. Photonics has also taken a preponderant role in cutting-edge science, allowing for instance to image nanospecimens, detect diseases or sense very tiny forces. The purpose of this course is three-fold: (i) We first aim to provide the fundamentals of photonics, establishing a solid basis for more specialised courses. (ii) Beyond theoretical concepts, our intention is to have students develop an intuition on how to manipulate light in practise. (iii) Finally, the course highlights how the taught concepts apply to modern research as well as to everyday life technologies (LCD screens, polarisation sun glasses, anti-reflection coating etc...). Content, including videos of laboratory experiments, has been designed to be approachable by students from a diverse set of science and engineering backgrounds. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | I- BASICS OF WAVE THEORY 1) General concepts 2) Differential wave equation 3) Wavefront 4) Plane waves and Fourier decomposition of optical fields 5) Spherical waves and Huygens-Fresnel principle II- ELECTROMAGNETIC WAVES 1) Maxwell equations 2) Wave equation for EM waves 3) Dielectric permittivity 4) Refractive index 5) Nonlinear optics 6) Polarisation and polarisation control III- PROPAGATION OF LIGHT 1) Waves at an interface 2) The Fresnel equations 3) Total internal reflection 4) Evanescent waves 5) Dispersion diagram IV- INTERFERENCES 1) General considerations 2) Temporal and spatial coherence 3) The Young double slit experiment 4) Diffraction gratings 5) The Michelson interferometer 6) Multi-wave interference 7) Antireflecting coating and interference filters 8) Optical holography V- LIGHT MANIPULATION 1) Optical waveguides 2) Photonic crystals 3) Metamaterials and metasurfaces 4) Optical cavities VI- INTRODUCTION TO OPTICAL MICROSCOPY 1) Basic concepts 2) Direct and Fourier imaging 3) Image formation 4) Fluorescence microscopy 5) Scattering-based microscopy 6) Digital holography 7) Computational imaging VII- OPTICAL FORCES AND OPTICAL TWEEZERS 1) History of optical forces 2) Theory of optical trapping 3) Atom cooling 4) Optomechanics 5) Plasmonic trapping 6) Applications of optical tweezers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Class notes and handouts | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Optics (Hecht) - Pearson | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Physics I, Physics II | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0113-00L | Leistungselektronik ![]() | W | 6 KP | 4G | J. W. Kolar | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Einsatzbereiche leistungselektronischer Konverter; Grundkonzept leistungselektronischer Spannungs- und Stromkonversion; Ableitung von DC/DC- (mit und ohne Potentialtrennung), AC/DC-, DC/AC- Konverterstrukturen; Methodik der Analyse sowie Analyse und Berechnung der Funktion; Betriebsverhalten und Betriebsbereich, Dimensionierungskriterien und Dimensionierung der Hauptkomponenten. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Verständnis des Grundkonzeptes leistungselektronischer Spannungs- und Stromkonversion, der Ableitung von DC/DC- (mit und ohne Potentialtrennung), AC/DC-, DC/AC- Konverterstrukturen, der Methodik der Analyse und der Berechnung der Funktion leistungselektronischer Konverter, des Betriebsbereiches, und der Dimensionierungskriterien und der Dimensionierung der Hauptkomponenten. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Einsatzbereiche und Anwendungsbeispiele leistungselektronischer Konverter; Grundkonzept leistungselektronischer Spannungs- und Stromkonversion, Pulsbreitenmodulation, Ableitung der Schaltungsstrukturen; DC/DC Konverter / Tiefsetzsteller, Hochsetzsteller, Hoch-Tiefsetzsteller mit kontinuierlicher und diskontinuierlicher Stromführung, Erweiterung auf DC/AC Konversion basierend auf der Erzeugung von AC Spannungen durch zeitliche Änderung der Differenz unipolarer Ausgangsgleichspannungen; Einphasen-Diodenbrückenschaltung; Aktiver Hochsetz-Einphasengleichrichter mit Sinuseingangsstrom, Toleranzbandstromregelung und kaskadierte Ausgangsspannungs- und unterlagerte Stromregelung mit konstanter Schaltfrequenz, lokale und globale Mittelung pulsfrequent diskontinuierlicher Grössen zur Berechnung der Beanspruchung von Leistungskomponenten; Dreiphasen-AC/DC-Konversion, Diodengleichrichter-Mittelpunktsschaltung mit eingeprägtem Ausgangsstrom, Thyristorfunktion, Tyristorstromrichter (Mittelpunkts- und Vollbrückenschaltung), Zündwinkel, Gleich- und Wechselrichterbetrieb, Kippgrenze; Induktivitäten und Einphasentransformatoren, Wachstumsgesetze und Dimensionierung; Potentialgetrennte DC/DC Konverter, Sperrwandler und Durchflusswandler, Einschalter- und Zweischalterausführung; Einphasen DC/AC Konversion, Vierquadrantensteller, unipolare und bipolare Modulation, Grundschwingungsmodell des Netzverhaltens; Dreiphasen DC/AC Konverter mit Last in Dreiphasen-Sternschaltung, Nullspannungsanteil und strombildender Ausgangsspannungsanteil, Grundfrequenztaktung und Pulsbreitenmodulation mit gemeinsamem Dreieckträgersignal und phasenbezogenen Trägersignalen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Skript und Simulationsprogramm für interaktives Lernen und Visualisierung, Uebungen mit Musterlösungen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Voraussetzungen: Grundkenntnisse der Elektrotechnik / Schaltungsanalyse und Signaltheorie. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Geförderte Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0124-00L | Embedded Systems ![]() ![]() | W | 6 KP | 4G | M. Magno, L. Thiele | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | An embedded system is some combination of computer hardware and software, either fixed in capability or programmable, that is designed for a specific function or for specific functions within a larger system. The course covers theoretical and practical aspects of embedded system design and includes a series of lab sessions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Understanding specific requirements and problems arising in embedded system applications. Understanding architectures and components, their hardware-software interfaces, the memory architecture, communication between components, embedded operating systems, real-time scheduling theory, shared resources, low-power and low-energy design as well as hardware architecture synthesis. Using the formal models and methods in embedded system design in practical applications using the programming language C, the operating system ThreadX, a commercial embedded system platform and the associated design environment. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | An embedded system is some combination of computer hardware and software, either fixed in capability or programmable, that is designed for a specific function or for specific functions within a larger system. For example, they are part of industrial machines, agricultural and process industry devices, automobiles, medical equipment, cameras, household appliances, airplanes, sensor networks, internet-of-things, as well as mobile devices. The focus of this lecture is on the design of embedded systems using formal models and methods as well as computer-based synthesis methods. Besides, the lecture is complemented by laboratory sessions where students learn to program in C, to base their design on the embedded operating systems ThreadX, to use a commercial embedded system platform including sensors, and to edit/debug via an integrated development environment. Specifically the following topics will be covered in the course: Embedded system architectures and components, hardware-software interfaces and memory architecture, software design methodology, communication, embedded operating systems, real-time scheduling, shared resources, low-power and low-energy design, hardware architecture synthesis. More information is available at https://pbl.ee.ethz.ch/education/embedded-systems.html . | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | The following information will be available: Lecture material, publications, exercise sheets and laboratory documentation at https://pbl.ee.ethz.ch/education/embedded-systems.html . | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | P. Marwedel: Embedded System Design, Springer, ISBN 978-3-319-56045-8, 2018. G.C. Buttazzo: Hard Real-Time Computing Systems. Springer Verlag, ISBN 978-1-4614-0676-1, 2011. Edward A. Lee and Sanjit A. Seshia: Introduction to Embedded Systems, A Cyber-Physical Systems Approach, Second Edition, MIT Press, ISBN 978-0-262-53381-2, 2017. M. Wolf: Computers as Components – Principles of Embedded System Design. Morgan Kaufman Publishers, ISBN 978-0-128-05387-4, 2016. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Prerequisites: Basic knowledge in computer architectures and programming. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0517-10L | Fundamentals of Electric Machines ![]() | W | 6 KP | 4G | D. Bortis, R. Bosshard | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course introduces to different electric machine concepts and provides a deeper understanding of their detailed operating principles. Different aspects arising in the design of electric machines, like dimensioning of magnetic and electric circuits as well as consideration of mechanical and thermal constraints, are investigated. The exercises are used to consolidate the concepts discussed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The objective of this course is to convey knowledge on the operating principles of different types of electric machines. Further objectives are to evaluate machine types for given specifications and to acquire the ability to perform a rough design of an electrical machine while considering the versatile aspects with respect to magnetic, electrical, mechanical and thermal limitations. Exercises are used to consolidate the presented theoretical concepts. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | ‐ Fundamentals in magnetic circuits and electromechanical energy conversion. ‐ Force and torque calculation. ‐ Operating principles, magnetic and electric modelling and design of different electric machine concepts: DC machine, AC machines (permanent magnet synchronous machine, reluctance machine and induction machine). ‐ Complex space vector notation, rotating coordinate system (dq-transformation). ‐ Loss components in electric machines, scaling laws of electromechanical actuators. ‐ Mechanical and thermal modelling. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture notes and associated exercises including correct answers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
376-1504-00L | Physical Human Robot Interaction (pHRI) ![]() | W | 4 KP | 2V + 2U | O. Lambercy | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course focuses on the emerging, interdisciplinary field of physical human-robot interaction, bringing together themes from robotics, real-time control, human factors, haptics, virtual environments, interaction design and other fields to enable the development of human-oriented robotic systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The objective of this course is to give an introduction to the fundamentals of physical human robot interaction, through lectures on the underlying theoretical/mechatronics aspects and application fields, in combination with a hands-on lab tutorial. The course will guide students through the design and evaluation process of such systems. By the end of this course, you should understand the critical elements in human-robot interactions - both in terms of engineering and human factors - and use these to evaluate and de- sign safe and efficient assistive and rehabilitative robotic systems. Specifically, you should be able to: 1) identify critical human factors in physical human-robot interaction and use these to derive design requirements; 2) compare and select mechatronic components that optimally fulfill the defined design requirements; 3) derive a model of the device dynamics to guide and optimize the selection and integration of selected components into a functional system; 4) design control hardware and software and implement and test human-interactive control strategies on the physical setup; 5) characterize and optimize such systems using both engineering and psychophysical evaluation metrics; 6) investigate and optimize one aspect of the physical setup and convey and defend the gained insights in a technical presentation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This course provides an introduction to fundamental aspects of physical human-robot interaction. After an overview of human haptic, visual and auditory sensing, neurophysiology and psychophysics, principles of human-robot interaction systems (kinematics, mechanical transmissions, robot sensors and actuators used in these systems) will be introduced. Throughout the course, students will gain knowledge of interaction control strategies including impedance/admittance and force control, haptic rendering basics and issues in device design for humans such as transparency and stability analysis, safety hardware and procedures. The course is organized into lectures that aim to bring students up to speed with the basics of these systems, readings on classical and current topics in physical human-robot interaction, laboratory sessions and lab visits. Students will attend periodic laboratory sessions where they will implement the theoretical aspects learned during the lectures. Here the salient features of haptic device design will be identified and theoretical aspects will be implemented in a haptic system based on the haptic paddle (https://relab.ethz.ch/downloads/open-hardware/haptic-paddle.html), by creating simple dynamic haptic virtual environments and understanding the performance limitations and causes of instabilities (direct/virtual coupling, friction, damping, time delays, sampling rate, sensor quantization, etc.) during rendering of different mechanical properties. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Will be distributed on Moodle before the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Abbott, J. and Okamura, A. (2005). Effects of position quantization and sampling rate on virtual-wall passivity. Robotics, IEEE Transactions on, 21(5):952 - 964. Adams, R. and Hannaford, B. (1999). Stable haptic interaction with virtual environments. Robotics and Automation, IEEE Transactions on, 15(3):465 - 474. Buerger, S. and Hogan, N. (2007). Complementary stability and loop shaping for improved human-robot interaction. Robotics, IEEE Transactions on, 23(2):232 - 244. Burdea, G. and Brooks, F. (1996). Force and touch feedback for virtual reality. John Wiley & Sons New York NY. Colgate, J. and Brown, J. (1994). Factors affecting the z-width of a haptic display. In Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on, pages 3205 -3210 vol. 4. Diolaiti, N., Niemeyer, G., Barbagli, F., and Salisbury, J. (2006). Stability of haptic rendering: Discretization, quantization, time delay, and coulomb effects. Robotics, IEEE Transactions on, 22(2):256 - 268. Gillespie, R. and Cutkosky, M. (1996). Stable user-specific haptic rendering of the virtual wall. In Proceedings of the ASME International Mechanical Engineering Congress and Exhibition, volume 58, pages 397 - 406. Hannaford, B. and Ryu, J.-H. (2002). Time-domain passivity control of haptic interfaces. Robotics and Automation, IEEE Transactions on, 18(1):1 - 10. Hashtrudi-Zaad, K. and Salcudean, S. (2001). Analysis of control architectures for teleoperation systems with impedance/admittance master and slave manipulators. The International Journal of Robotics Research, 20(6):419. Hayward, V. and Astley, O. (1996). Performance measures for haptic interfaces. In ROBOTICS RESEARCH-INTERNATIONAL SYMPOSIUM, volume 7, pages 195-206. Citeseer. Hayward, V. and Maclean, K. (2007). Do it yourself haptics: part i. Robotics Automation Magazine, IEEE, 14(4):88 - 104. Leskovsky, P., Harders, M., and Szeekely, G. (2006). Assessing the fidelity of haptically rendered deformable objects. In Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2006 14th Symposium on, pages 19 - 25. MacLean, K. and Hayward, V. (2008). Do it yourself haptics: Part ii [tutorial]. Robotics Automation Magazine, IEEE, 15(1):104 - 119. Mahvash, M. and Hayward, V. (2003). Passivity-based high-fidelity haptic rendering of contact. In Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference on, volume 3, pages 3722 - 3728. Mehling, J., Colgate, J., and Peshkin, M. (2005). Increasing the impedance range of a haptic display by adding electrical damping. In Eurohaptics Conference, 2005 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005. World Haptics 2005. First Joint, pages 257 - 262. Okamura, A., Richard, C., and Cutkosky, M. (2002). Feeling is believing: Using a force-feedback joystick to teach dynamic systems. JOURNAL OF ENGINEERING EDUCATION-WASHINGTON, 91(3):345 - 350. O'Malley, M. and Goldfarb, M. (2004). The effect of virtual surface stiffness on the haptic perception of detail. Mechatronics, IEEE/ASME Transactions on, 9(2):448 - 454. Richard, C. and Cutkosky, M. (2000). The effects of real and computer generated friction on human performance in a targeting task. In Proceedings of the ASME Dynamic Systems and Control Division, volume 69, page 2. Salisbury, K., Conti, F., and Barbagli, F. (2004). Haptic rendering: Introductory concepts. Computer Graphics and Applications, IEEE, 24(2):24 - 32. Weir, D., Colgate, J., and Peshkin, M. (2008). Measuring and increasing z-width with active electrical damping. In Haptic interfaces for virtual environment and teleoperator systems, 2008. haptics 2008. symposium on, pages 169 - 175. Yasrebi, N. and Constantinescu, D. (2008). Extending the z-width of a haptic device using acceleration feedback. Haptics: Perception, Devices and Scenarios, pages 157-162. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Notice: The registration is limited to 26 students There are 4 credit points for this lecture. The lecture will be held in English. The students are expected to have basic control knowledge from previous classes. http://www.relab.ethz.ch/education/courses/phri.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() Fokus-Koordinator: Prof. Christofer Hierold | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0621-00L | Microsystems I: Process Technology and Integration | W+ | 6 KP | 3V + 3U | M. Haluska, C. Hierold | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Die Stundenten werden in die Grundlagen der Mikrosystemtechnik, der Halbleiterphysik und der Halbleiterprozesstechnologie eingeführt und erfahren, wie die Herstellung von Mikrosystemen in einer Serie von genau definierten Prozessschritten erfolgt (Gesamtprozess und Prozessablauf). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Die Stundenten sind mit den Grundlagen der Mikrosystemtechnik und der Prozesstechnologie für Halbleiter vertraut und verstehen die Herstellung von Mikrosystemen durch die Kombination von Einzelprozesschritten ( = Gesamtprozess oder Prozessablauf). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | - Einführung in die Mikrosystemtechnik (MST) und in mikroelektromechanische Systeme (MEMS) - Grundlegende Siliziumtechnologie: thermische Oxidation, Fotolithografie und Ätztechnik, Diffusion und Ionenimplantation, Dünnschichttechnik. - Besondere Mikrosystemtechnologien: Volumen- und Oberflächenmikromechanik, Trocken- und Nassätzen, isotropisches und anisotropisches Ätzen, Herstellung von Balken und Membranen, Waferbonden, mechanische Eigenschaften von Dünnschichten. Die Anwendung ausgewählter Technologien wird anhand von Fallstudien nachgewiesen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Handouts (online erhältlich) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | - S.M. Sze: Semiconductor Devices, Physics and Technology - W. Menz, J. Mohr, O.Paul: Microsystem Technology - Hong Xiao: Introduction to Semiconductor Manufacturing Technology - M. J. Madou: Fundamentals of Microfabrication and Nanotechnology, 3rd ed. - T. M. Adams, R. A. Layton: Introductory MEMS, Fabrication and Applications | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Voraussetzung: Physik I und II | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0509-00L | Acoustics in Fluid Media: From Robotics to Additive Manufacturing Note: The previous course title until HS21 "Microscale Acoustofluidics" | W | 4 KP | 3G | D. Ahmed | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course will provide you with the fundamentals of the new and exciting field of ultrasound-based microrobots to treat various diseases. Furthermore, we will explore how ultrasound can be used in additive manufacturing for tissue constructs and robotics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The course is designed to equip students with skills in the design and development of ultrasound-based manipulation devices and microrobots for applications in medicine and additive manufacturing. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Linear and nonlinear acoustics, foundations of fluid and solid mechanics and piezoelectricity, Gorkov potential, numerical modelling, acoustic streaming, applications from ultrasonic microrobotics to surface acoustic wave devices | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Yes, incl. Chapters from the Tutorial: Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Solid and fluid continuum mechanics. Notice: The exercise part is a mixture of presentation, lab sessions ( both compulsary) and hand in homework. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Geförderte Kompetenzen![]() |
|
Seite 1 von 4
Alle