Search result: Catalogue data in Autumn Semester 2022
Biology Master | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Elective Major Subject Areas | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Elective Major: Molecular Plant Biology | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Compulsory Master Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
551-0120-00L | Plant Biology Colloquium (Autumn Semester) This compulsory course is required only once. It may be taken in autumn as course 551-0120-00 "Plant Biology Colloquium (Autumn Semester)" or in spring as course 551-0120-01 "Plant Biology Colloquium (Spring Semester)". | W | 2 credits | 1K | S. C. Zeeman, K. Bomblies, C. Sánchez-Rodríguez, O. Voinnet | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Current topics in Molecular Plant Biology presented by internal and external speakers from accademia. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Getting insight into actual areas and challenges of Molecular Plant Biology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | http://www.impb.ethz.ch/news-and-events/colloquium-impb.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Compulsory Concept Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0311-00L | Molecular Life of Plants | O | 6 credits | 4V | S. C. Zeeman, K. Bomblies, O. Voinnet | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The advanced course introduces students to plants through a concept-based discussion of developmental processes that integrates physiology and biochemistry with genetics, molecular biology, and cell biology. The course follows the life of the plant, starting with the seed, progressing through germination to the seedling and mature plant, and ending with reproduction and senescence. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The new course "Molecular Life of Plants" reflects the rapid advcances that are occurring in the field of experimental plant biology as well as the changing interests of students being trained in this discipline. Contemporary plant biology courses emphasize a traditional approach to experimental plant biology by discussing discrete topics that are removed from the context of the plant life cycle. The course will take an integrative approach that focuses on developmental concepts. Whereas traditional plant physiology courses were based on research carried out on intact plants or plant organs and were often based on phenomenological observations, current research in plant biology emphasizes work at the cellular, subcellular and molecular levels. The goal of "Molecular Life of Plants" is to train students in integrative approaches to understand the function of plants in a developmental context. While the course focuses on plants, the training integrative approaches will also be useful for other organisms. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course "Molecular Life of Plants" will cover the following topics: Plant genome organization and evolution Plant functional genomics and systems biology Plant genome engineering and editing Seed development and embryogenesis Root apical meristem: structure, function and hormone regulation Shoot apical meristem: structure, function and hormone regulation Mobilization of seed reserves Heterotrophic to autotrophic growth Chloroplast biogenesis and light perception Photosynthetic and central carbon metabolism Integration of carbon and nitrogen metabolism Principles of RNA silencing MicroRNAs: discovery and modes of action RNA silencing and pathogen defense RNA silencing movement, amplification and trans-generational silencing Plants and the environment Plant-pathogen interactions: pathogen attack, first layers of plant defense and plant responses Senescence | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Elective Compulsory Concept Courses See D-BIOL Master Studies Guide | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0307-00L | Molecular and Structural Biology I: Protein Structure and Function D-BIOL students are obliged to take part I and part II (next semester) as a two-semester course | W | 3 credits | 2V | R. Glockshuber, K. Locher, E. Weber-Ban | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Biophysics of protein folding, membrane proteins and biophysics of membranes, enzymatic catalysis, catalytic RNA and RNAi, current topics in protein biophysics and structural biology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Understanding of structure-function relationships in proteins and in protein folding, detailed understanding of biophysics and physical methods as well as modern methods for protein purification and microanalytics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Scripts on the individual topics can be found under http://www.mol.biol.ethz.ch/teaching. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Basics: - Creighton, T.E., Proteins, Freeman, (1993) - Fersht, A., Enzyme, Structure and Mechanism in Protein Science (1999), Freeman. - Berg, Tymoczko, Stryer: Biochemistry (5th edition), Freeman (2001). Current topics: References will be given during the lectures. . | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0309-00L | Concepts in Modern Genetics Information for UZH students: Enrolment to this course unit only possible at ETH. No enrolment to module BIO348 at UZH. Please mind the ETH enrolment deadlines for UZH students: Link | W | 6 credits | 4V | Y. Barral, D. Bopp, A. Hajnal, O. Voinnet | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Concepts of modern genetics and genomics, including principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This course focuses on the concepts of classical and modern genetics and genomics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The topics include principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Scripts and additional material will be provided during the semester. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0313-00L | Microbiology (Part I) | W | 3 credits | 2V | W.‑D. Hardt, L. Eberl, B. Nguyen, J. Piel, M. Pilhofer, A. Vagstad | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Advanced lecture class providing a broad overview on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This concept class will be based on common concepts and introduce to the enormous diversity among bacteria and archaea. It will cover the current research on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Advanced class covering the state of the research in bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Updated handouts will be provided during the class. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Current literature references will be provided during the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | English The lecture "Grundlagen der Biologie II: Mikrobiologie" is the basis for this advanced lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0319-00L | Cellular Biochemistry (Part I) | W | 3 credits | 2V | U. Kutay, G. Neurohr, M. Peter, I. Zemp | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Concepts and molecular mechanisms underlying the biochemistry of the cell, providing advanced insights into structure, function and regulation of individual cell components. Particular emphasis will be put on the spatial and temporal integration of different molecules and signaling pathways into global cellular processes such as intracellular transport, cell division & growth, and cell migration. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterisation of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry. The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain the integration of different molecules and signaling pathways into complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, cell division and cell growth. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Structural and functional details of individual cell components, regulation of their interactions, and various aspects of the regulation and compartmentalisation of biochemical processes. Topics include: biophysical and electrical properties of membranes; viral membranes; structural and functional insights into intracellular transport and targeting; vesicular trafficking and phagocytosis; post-transcriptional regulation of gene expression. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Scripts and additional material will be provided during the semester. Please contact Dr. Alicia Smith for assistance with the learning materials. (alicia.smith@bc.biol.ethz.ch) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Recommended supplementary literature (review articles and selected primary literature) will be provided during the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | To attend this course the students must have a solid basic knowledge in chemistry, biochemistry and general biology. The course will be taught in English. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-2413-00L | Evolutionary Genetics | W | 6 credits | 4V | T. Städler, A. Widmer, S. Fior, M. Fischer, J. Stapley | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The concept course 'Evolutionary Genetics' consists of two lectures that jointly provide an introduction to the fields of population and quantitative genetics (emphasis on basic concepts) and ecological genetics (more emphasis on evolutionary and ecological processes of adaptation and speciation). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The aim of the course is to provide students with a solid introduction to the fields of population genetics, quantitative genetics, and ecological genetics. The concepts and research methods developed in these fields have undergone profound transformations; they are of fundamental importance in our understanding of evolutionary processes, both past and present. Students should gain an appreciation for the concepts, methods and explanatory power of evolutionary genetics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Population genetics - Types and sources of genetic variation; randomly mating populations and the Hardy-Weinberg equilibrium; effects of inbreeding; natural selection; random genetic drift and effective population size; gene flow and hierarchical population structure; molecular population genetics: neutral theory of molecular evolution and basics of coalescent theory. Quantitative genetics - Continuous variation; measurement of quant. characters; genes, environments and their interactions; measuring their influence; response to selection; inbreeding and crossbreeding, effects on fitness; Fisher's fundamental theorem. Ecological Genetics - Concepts and methods for the study of genetic variation and its role in adaptation, reproductive isolation, hybridization and speciation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Handouts | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Hamilton, M.B. 2009. Population Genetics. Wiley-Blackwell, Chichester, U.K. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0731-00L | Nucleic Acids and Carbohydrates Note for BSc Biology students: Only one of the two concept courses 529-0731-00 Nucleic Acids and Carbohydrates (autumn semester) or 529-0732-00 Proteins and Lipids (spring semester) can be counted for the Bachelor's degree. | W | 6 credits | 3G | K. Lang, P. A. Kast, S. J. Sturla, H. Wennemers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | No script; illustrations from the original literature relevant to the individual lectures will be provided weekly (typically as handouts downloadable from the Moodle server). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Mainly based on original literature, a detailed list will be distributed during the lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Elective Compulsory Master Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
751-5121-00L | Insect Ecology | W | 2 credits | 2V | C. De Moraes, N. Stanczyk | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This is an introductory class on insect ecology. During the course you will learn about insect interactions with, and adaptations to, their environment and other organisms, and the importance of insect roles in our ecosystems. This course includes lectures, small group discussions and outside readings. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The aim of the course is to gain an understanding of how insects have specialised and adapted to occupy diverse environmental niches and become vital to ecosystem processes. Important topics include: insect-plant interactions, chemical ecology, predator-prey interactions, vectors of disease, social insects, mutual and parasitic interactions and examining insect ecology in an evolutionary context. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Provided to students through Moodle | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Selected required readings (peer reviewed literature). Optional recommended readings with additional information. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-1153-00L | Systems Biology of Metabolism Number of participants limited to 15. | W | 4 credits | 2V | U. Sauer, N. Zamboni, M. Zampieri | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Starting from contemporary biological problems related to metabolism, the course focuses on systems biological approaches to address them. In a problem-oriented, this-is-how-it-is-done manner, we thereby teach modern methods and concepts. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Develop a deeper understanding of how relevant biological problems can be solved, thereby providing advanced insights to key experimental and computational methods in systems biology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course will be given as a mixture of lectures, studies of original research and guided discussions that focus on current research topics. For each particular problem studied, we will work out how the various methods work and what their capabilities/limits are. The problem areas range from microbial metabolism to cancer cell metabolism and from metabolic networks to regulation networks in populations and single cells. Key methods to be covered are various modeling approaches, metabolic flux analyses, metabolomics and other omics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Script and original publications will be supplied during the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good knowledge of biochemistry and basics of mathematics and chemistry. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
751-4504-00L | Plant Pathology I | W | 2 credits | 2G | B. McDonald | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Plant Pathology I will focus on pathogen-plant interactions, epidemiology, disease assessment, and disease development in agroecosystems. Themes will include: 1) how pathogens attack plants and; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students will understand: 1) how pathogens attack plants and; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems as a basis for implementing disease management strategies in agroecosystems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Course description: Plant Pathology I will focus on pathogen-plant interactions, epidemiology, disease assessment, and disease development in agroecosystems. Themes will include: 1) how pathogens attack plants and; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems. Topics under the first theme will include pathogen life cycles, disease cycles, and an overview of plant pathogenic nematodes, viruses, bacteria, and fungi. Topics under the second theme will include plant defense strategies, host range, passive and active defenses, and chemical and structural defenses. Topics under the third theme will include the disease triangle and cultural control strategies. Lecture Topics and Tentative Schedule Week 1 The nature of plant diseases, symbiosis, parasites, mutualism, biotrophs and necrotrophs, disease cycles and pathogen life cycles. Week 2 Nematode attack strategies and types of damage. Viral pathogens, classification, reproduction and transmission, attack strategies and types of damage. Examples TMV, BYDV. Bacterial pathogens and phytoplasmas, classification, reproduction and transmission. Week 3 Bacterial attack strategies and symptoms. Example bacterial diseases: fire blight, Agrobacterium crown gall, soft rots. Fungal and oomycete pathogens, classification, growth and reproduction, sexual and asexual spores, transmission. Week 4 Fungal and oomycete life cycles, disease cycles, infection processes, colonization, phytotoxins and mycotoxins. Attack strategies of fungal necrotrophs and biotrophs. Symptoms and signs of fungal infection. Example fungal diseases: potato late blight. Week 5 Example fungal diseases: wheat stem rust, grape powdery mildew, wheat septoria tritici blotch. Plant defense mechanisms, host range and non-host resistance. Passive structural and chemical defenses, preformed chemical defenses. Active structural defense, histological and cellular (papillae). Week 6 Active chemical defense, hypersensitive response, pathogenesis-related (PR) proteins, phytoalexins and disease resistance. Pisatin and pisatin demethylase. Local and systemic acquired resistance (LAR, SAR), induced systemic resistance (ISR), signal molecules, defense activators (Bion). Pathogen effects on food quality. Positive and negative transformations. Week 7 Negative pathogen impacts on crop yield and quality. Pathogen effects on food safety. Mycotoxins in the food chain. Aflatoxin, patulin safety assessment and action thresholds. Epidemiology: historical epidemics. Week 8 Epidemiology: Disease pyramid, environmental effects on epidemic development, plant effects on development of epidemics, including resistance, physiology, density, uniformity. Week 9 Disease assessment: incidence and severity measures, keys, diagrams, scales, measurement errors. Correlations between incidence and severity. Molecular detection and diagnosis of pathogens. Host indexing, serology, monoclonal and polyclonal antibodies, ELISA. Week 10 Molecular detection and diagnosis of pathogens: PCR, rDNA and loop-mediated isothermal amplification. Strategies for minimizing disease risks: calculating disease thresholds, disease forecasting systems. Week 11 Strategies for minimizing disease risks: lowering epidemic risk, ecological risk assessment, natural and synthetic pesticides. Disease control strategies: economic thresholds, overview of control strategies. Week 12 Physical control methods. Cultural control methods: avoidance, tillage practices, crop sanitation. Week 13 Cultural control methods: fertilizers, crop rotations. Week 14 Open lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Detailed lecture notes (~160 pages) will be available for purchase at the cost of reproduction at the start of the semester. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-1407-00L | RNA Biology Lecture Series I: Transcription & Processing & Translation | W | 4 credits | 2V | F. Allain, N. Ban, S. Jonas, U. Kutay, further lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course covers aspects of RNA biology related to gene expression at the posttranscriptional level. These include RNA transcription, processing, alternative splicing, editing, export and translation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The students should obtain an understanding of these processes, which are at work during gene expression. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Transcription & 3'end formation ; splicing, alternative splicing, RNA editing; the ribosome & translation, translation regulation, RNP biogenesis & nuclear export, mRNA surveillance & mRNA turnover; signal transduction & RNA. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Basic knowledge of cell and molecular biology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-1409-00L | RNA Biology Lecture Series II: Non-Coding RNAs: Biology and Therapeutics Does not take place this semester. | W | 4 credits | 2V | J. Hall, M. Stoffel, further lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course covers aspects of RNA biology related to the functions of non-coding RNAs as well as their use as drugs to treat diseases. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The students should get familiar with the wide array of roles, which non-coding RNAs play in cellular functions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Micro RNAs; computational approaches to miRNAs; micro RNA function in metabolism; viruses and viral RNAs; nucleic acid-based drugs; ncRNA-mediated genome regulation; epigenetic programming of genome remodelling in ciliates; telomerase and telomeres; tRNA biology. http://www.nccr-rna-and-disease.ch/tiki-index.php?page=LectureSeries | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Basic knowledge of cell and molecular biology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0733-02L | Chemical Biology and Synthetic Biochemistry | W | 6 credits | 3G | K. Lang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Overview of modern chemical biology and synthetic biochemistry techniques, focussed on protein modification and labeling and on methods to endow proteins with novel functionalities. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | After taking this course, students should be capable of the following: A) Recall different possibilities for modifying proteins in vitro and in vivo and their applications in a biological context, B) Understand the chemical and biochemical consequences of modifications and assess the different reaction possibilities in the context of in vivo - in vitro, C) Critically analyze and assess current chemical biology articles D) Question the approaches learned and apply them to new biological problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | principles of protein labeling and protein modification (fluoresencent proteins, enzyme-mediated labeling, bioorthogonal chemistries); principles of genetic code expansion (amber suppression, orthogonal ribosomes, unnatural base pairs, genome engineering and genome editing); chemical biology of ubiquitin and targeted protein degradation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | A script will not be handed out. Handouts to the lecture will be provided through moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Citations from the original literature relevant to the individual lectures will be assigned during the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Knowledge provided in the bachelor lectures 'Nucleic Acids and Carbohydrates' and 'Proteins and Lipids' is assumed for this lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Elective Concept Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0307-00L | Molecular and Structural Biology I: Protein Structure and Function D-BIOL students are obliged to take part I and part II (next semester) as a two-semester course | W | 3 credits | 2V | R. Glockshuber, K. Locher, E. Weber-Ban | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Biophysics of protein folding, membrane proteins and biophysics of membranes, enzymatic catalysis, catalytic RNA and RNAi, current topics in protein biophysics and structural biology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Understanding of structure-function relationships in proteins and in protein folding, detailed understanding of biophysics and physical methods as well as modern methods for protein purification and microanalytics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Scripts on the individual topics can be found under http://www.mol.biol.ethz.ch/teaching. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Basics: - Creighton, T.E., Proteins, Freeman, (1993) - Fersht, A., Enzyme, Structure and Mechanism in Protein Science (1999), Freeman. - Berg, Tymoczko, Stryer: Biochemistry (5th edition), Freeman (2001). Current topics: References will be given during the lectures. . | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0309-00L | Concepts in Modern Genetics Information for UZH students: Enrolment to this course unit only possible at ETH. No enrolment to module BIO348 at UZH. Please mind the ETH enrolment deadlines for UZH students: Link | W | 6 credits | 4V | Y. Barral, D. Bopp, A. Hajnal, O. Voinnet | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Concepts of modern genetics and genomics, including principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This course focuses on the concepts of classical and modern genetics and genomics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The topics include principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Scripts and additional material will be provided during the semester. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0313-00L | Microbiology (Part I) | W | 3 credits | 2V | W.‑D. Hardt, L. Eberl, B. Nguyen, J. Piel, M. Pilhofer, A. Vagstad | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Advanced lecture class providing a broad overview on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This concept class will be based on common concepts and introduce to the enormous diversity among bacteria and archaea. It will cover the current research on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Advanced class covering the state of the research in bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Updated handouts will be provided during the class. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Current literature references will be provided during the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | English The lecture "Grundlagen der Biologie II: Mikrobiologie" is the basis for this advanced lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0319-00L | Cellular Biochemistry (Part I) | W | 3 credits | 2V | U. Kutay, G. Neurohr, M. Peter, I. Zemp | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Concepts and molecular mechanisms underlying the biochemistry of the cell, providing advanced insights into structure, function and regulation of individual cell components. Particular emphasis will be put on the spatial and temporal integration of different molecules and signaling pathways into global cellular processes such as intracellular transport, cell division & growth, and cell migration. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterisation of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry. The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain the integration of different molecules and signaling pathways into complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, cell division and cell growth. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Structural and functional details of individual cell components, regulation of their interactions, and various aspects of the regulation and compartmentalisation of biochemical processes. Topics include: biophysical and electrical properties of membranes; viral membranes; structural and functional insights into intracellular transport and targeting; vesicular trafficking and phagocytosis; post-transcriptional regulation of gene expression. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Scripts and additional material will be provided during the semester. Please contact Dr. Alicia Smith for assistance with the learning materials. (alicia.smith@bc.biol.ethz.ch) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Recommended supplementary literature (review articles and selected primary literature) will be provided during the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | To attend this course the students must have a solid basic knowledge in chemistry, biochemistry and general biology. The course will be taught in English. |
- Page 1 of 1