Search result: Catalogue data in Autumn Semester 2022
Physics Bachelor no course offering in this semester | ||||||
Bachelor Studies (Programme Regulations 2021) | ||||||
First Year Compulsory Courses | ||||||
First Year Examination Block 1 | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|
401-1261-07L | Analysis I: One Variable | O | 10 credits | 6V + 3U | G. Felder | |
Abstract | Introduction to the differential and integral calculus in one real variable: fundaments of mathematical thinking, numbers, sequences, basic point set topology, continuity, differentiable functions, ordinary differential equations, Riemann integration. | |||||
Learning objective | The ability to work with the basics of calculus in a mathematically rigorous way. | |||||
Literature | H. Amann, J. Escher: Analysis I https://link.springer.com/book/10.1007/978-3-7643-7756-4 J. Appell: Analysis in Beispielen und Gegenbeispielen https://link.springer.com/book/10.1007/978-3-540-88903-8 R. Courant: Vorlesungen über Differential- und Integralrechnung https://link.springer.com/book/10.1007/978-3-642-61988-5 O. Forster: Analysis 1 https://link.springer.com/book/10.1007/978-3-658-00317-3 H. Heuser: Lehrbuch der Analysis https://link.springer.com/book/10.1007/978-3-322-96828-9 K. Königsberger: Analysis 1 https://link.springer.com/book/10.1007/978-3-642-18490-1 W. Walter: Analysis 1 https://link.springer.com/book/10.1007/3-540-35078-0 V. Zorich: Mathematical Analysis I (englisch) https://link.springer.com/book/10.1007/978-3-662-48792-1 A. Beutelspacher: "Das ist o.B.d.A. trivial" https://link.springer.com/book/10.1007/978-3-8348-9599-8 H. Schichl, R. Steinbauer: Einführung in das mathematische Arbeiten https://link.springer.com/book/10.1007/978-3-642-28646-9 | |||||
402-1701-00L | Physics I | O | 7 credits | 4V + 2U | W. Wegscheider | |
Abstract | This course gives a first introduction to Physics with an emphasis on classical mechanics. | |||||
Learning objective | Acquire knowledge of the basic principles regarding the physics of classical mechanics. Skills in solving physics problems. | |||||
252-0847-00L | Computer Science | O | 5 credits | 2V + 2U | C. Cotrini Jimenez, F. Friedrich Wicker | |
Abstract | The course covers the fundamental concepts of computer programming with a focus on systematic algorithmic problem solving. Taught language is C++. No programming experience is required. | |||||
Learning objective | Primary educational objective is to learn programming with C++. After having successfully attended the course, students have a good command of the mechanisms to construct a program. They know the fundamental control and data structures and understand how an algorithmic problem is mapped to a computer program. They have an idea of what happens "behind the scenes" when a program is translated and executed. Secondary goals are an algorithmic computational thinking, understanding the possibilities and limits of programming and to impart the way of thinking like a computer scientist. | |||||
Content | The course covers fundamental data types, expressions and statements, (limits of) computer arithmetic, control statements, functions, arrays, structural types and pointers. The part on object orientation deals with classes, inheritance and polymorphism; simple dynamic data types are introduced as examples. In general, the concepts provided in the course are motivated and illustrated with algorithms and applications. | |||||
Lecture notes | English lecture notes will be provided during the semester. The lecture notes and the lecture slides will be made available for download on the course web page. Exercises are solved and submitted online. | |||||
Literature | Bjarne Stroustrup: Einführung in die Programmierung mit C++, Pearson Studium, 2010 Stephen Prata, C++ Primer Plus, Sixth Edition, Addison Wesley, 2012 Andrew Koenig and Barbara E. Moo: Accelerated C++, Addison-Wesley, 2000 | |||||
First Year Examination Block 2 | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
401-1151-00L | Linear Algebra I | O | 7 credits | 4V + 2U | P. Biran, M. Einsiedler | |
Abstract | Introduction to the theory of vector spaces for students of mathematics or physics: Basics, vector spaces, linear transformations, solutions of systems of equations, matrices, determinants, endomorphisms, eigenvalues, eigenvectors. | |||||
Learning objective | - Mastering basic concepts of Linear Algebra - Introduction to mathematical methods | |||||
Content | - Basics - Vectorspaces and linear maps - Systems of linear equations and matrices - Determinants - Endomorphisms and eigenvalues | |||||
Lecture notes | We will provide German lecture notes and an English translation at latest at the start of the semester. | |||||
Literature | Lecture notes in German and an English translation will be published on the website of the course, at latest at the start of the semester. Besides this we also recommend: - G. Fischer: Lineare Algebra. Springer-Verlag 2014. Link: http://link.springer.com/book/10.1007/978-3-658-03945-5 - K. Jänich: Lineare Algebra. Springer-Verlag 2004. Link: http://link.springer.com/book/10.1007/978-3-662-08375-8 - H.-J. Kowalsky, G. O. Michler: Lineare Algebra. Walter de Gruyter 2003. Link: https://www.degruyter.com/search?query=kowalsky+michler - S. H. Friedberg, A. J. Insel and L. E. Spence: Linear Algebra. Pearson 2003. Link In addition we recommend this general introduction into studying mathematics: - H. Schichl and R. Steinbauer: Einführung in das mathematische Arbeiten. Springer-Verlag 2012. Link: http://link.springer.com/book/10.1007%2F978-3-642-28646-9 | |||||
Second and Third Year Compulsory Courses | ||||||
Examination Blocks | ||||||
Examination Block I | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
401-2303-00L | Complex Analysis | O | 6 credits | 3V + 2U | E. Kowalski | |
Abstract | Complex functions of one variable, Cauchy-Riemann equations, Cauchy theorem and integral formula, singularities, residue theorem, index of closed curves, analytic continuation, special functions, conformal mappings, Riemann mapping theorem. | |||||
Learning objective | Working knowledge of functions of one complex variables; in particular applications of the residue theorem. | |||||
Literature | B. Palka: "An introduction to complex function theory." Undergraduate Texts in Mathematics. Springer-Verlag, 1991. E.M. Stein, R. Shakarchi: Complex Analysis. Princeton University Press, 2010 Th. Gamelin: Complex Analysis. Springer 2001 E. Titchmarsh: The Theory of Functions. Oxford University Press D. Salamon: "Funktionentheorie". Birkhauser, 2011. (In German) L. Ahlfors: "Complex analysis. An introduction to the theory of analytic functions of one complex variable." International Series in Pure and Applied Mathematics. McGraw-Hill Book Co. K.Jaenich: Funktionentheorie. Springer Verlag R.Remmert: Funktionentheorie I. Springer Verlag E.Hille: Analytic Function Theory. AMS Chelsea Publications | |||||
402-2203-01L | Classical Mechanics | O | 7 credits | 4V + 2U | M. Gaberdiel | |
Abstract | A conceptual introduction to theoretical physics: Newtonian mechanics, central force problem, oscillations, Lagrangian mechanics, symmetries and conservation laws, Hamiltonian mechanics, canonical transformations, Hamilton-Jacobi equation, spinning top, relativistic space-time structure. | |||||
Learning objective | Fundamental understanding of the description of Mechanics in the Lagrangian and Hamiltonian formulation. Detailed understanding of important applications, in particular, the Kepler problem, the physics of rigid bodies (spinning top) and of oscillatory systems. | |||||
402-2883-00L | Physics III | O | 7 credits | 4V + 2U | Y. Chu | |
Abstract | Introductory course on quantum and atomic physics including optics and statistical physics. | |||||
Learning objective | A basic introduction to quantum and atomic physics, including basics of optics and equilibrium statistical physics. The course will focus on the relation of these topics to experimental methods and observations. | |||||
Content | Einführung in die Quantenphysik: Planck’sche Strahlung (Wärmestrahlung), Photonen, Photoelektrischer Effekt, Thomson and Rutherford Streuung, Compton Streuung, Bohrsche Atommodell, de-Broglie Materiewellen. Optik/Wellenoptik: Linsen, Abbildungssysteme, Brechung und Fermatsches Prinzip, Beugung, Interferenz, Fabry-Perot, Interferometer, Spektrometer. Quantenmechanik: Dualismus Teilchen-Welle, Wellenfunktionen, Operatoren, Schrödinger-Gleichung, Potentialstufe und Potentialkasten, harmonischer Oszillator Quantenmechanische Atomphysik: Coulombpotential in der Schrödinger-Gleichung, Wasserstoffatom, Atomorbitale, Spin, Zeeman-Effekt, Spin-Bahn Kopplung, Mehrelektronenatome, Röntgenspektren, Auswahlregeln, Absorption und Emission von Strahlung, Molekülorbitale und Kovalente Bindung Statistische Physik: Wahrscheinlichkeitsverteilungen, Ideales Gas, Äquipartitionsgesetz, Zustandsdichte, Maxwell-Boltzmann-Verteilung, Fermi-Dirac-Statistik für Fermionen, Bose-Einstein-Statistik für Bosonen, Elektronengas, Herleitung Planck’sche Strahlungsgesetz (Photonengas) | |||||
Lecture notes | Im Rahmen der Veranstaltung werden die Folien in elektronischer Form zur Verfügung gestellt. Ergänzendes Buch wird als Pflichtlektüre empfohlen. Es wird kein Skript in der Vorlesung verteilt. Wir werden die Quantenmechanik anhand der Schrödinger-Gleichung mit den klassischen elektro-magnetischen Wellen vergleichen. Zu den klassischen Wellen werden Ergänzungsunterlagen verteilt. | |||||
Literature | M. Alonso, E. J. Finn Quantenphysik und Statistische Physik R. Oldenbourg Verlag, München 5. Auflage ISBN 978-3-486-71340-4 | |||||
Examination Block IIa | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
401-2333-00L | Mathematical Methods of Physics I | O | 6 credits | 3V + 2U | T. H. Willwacher | |
Abstract | Fourier series. Linear partial differential equations of mathematical physics. Fourier transform. Special functions and eigenfunction expansions. Distributions. Selected problems from quantum mechanics. | |||||
Learning objective | ||||||
Examination Block IIb Offered in the Spring Semester | ||||||
Other Compulsory Courses no course offering in this semester |
- Page 1 of 1