Suchergebnis: Katalogdaten im Herbstsemester 2022
Chemie- und Bioingenieurwissenschaften Master | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Wahlfächer | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Bioverfahrenstechnik | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
636-0108-00L | Biological Engineering and Biotechnology | W | 4 KP | 3V | M. Fussenegger | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | 1. Insight Into The Mammalian Cell Cycle. Cycling, The Balance Between Proliferation and Cancer - Implications For Biopharmaceutical Manufacturing. 2. The Licence To Kill. Apoptosis Regulatory Networks - Engineering of Survival Pathways To Increase Robustness of Production Cell Lines. 3. Everything Under Control I. Regulated Transgene Expression in Mammalian Cells - Facts and Future. 4. Secretion Engineering. The Traffic Jam getting out of the Cell. 5. From Target To Market. An Antibody's Journey From Cell Culture to The Clinics. 6. Biology and Malign Applications. Do Life Sciences Enable the Development of Biological Weapons? 7. Functional Food. Enjoy your Meal! 8. Industrial Genomics. Getting a Systems View on Nutrition and Health - An Industrial Perspective. 9. IP Management - Food Technology. Protecting Your Knowledge For Business. 10. Biopharmaceutical Manufacturing I. Introduction to Process Development. 11. Biopharmaceutical Manufacturing II. Up- stream Development. 12. Biopharmaceutical Manufacturing III. Downstream Development. 13. Biopharmaceutical Manufacturing IV. Pharma Development. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Handout during the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
636-0007-00L | Computational Systems Biology | W | 6 KP | 3V + 2U | J. Stelling | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Study of fundamental concepts, models and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation and analysis of biological networks. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Biology has witnessed an unprecedented increase in experimental data and, correspondingly, an increased need for computational methods to analyze this data. The explosion of sequenced genomes, and subsequently, of bioinformatics methods for the storage, analysis and comparison of genetic sequences provides a prominent example. Recently, however, an additional area of research, captured by the label "Systems Biology", focuses on how networks, which are more than the mere sum of their parts' properties, establish biological functions. This is essentially a task of reverse engineering. The aim of this course is to provide an introductory overview of corresponding computational methods for the modeling, simulation and analysis of biological networks. We will start with an introduction into the basic units, functions and design principles that are relevant for biology at the level of individual cells. Making extensive use of example systems, the course will then focus on methods and algorithms that allow for the investigation of biological networks with increasing detail. These include (i) graph theoretical approaches for revealing large-scale network organization, (ii) probabilistic (Bayesian) network representations, (iii) structural network analysis based on reaction stoichiometries, (iv) qualitative methods for dynamic modeling and simulation (Boolean and piece-wise linear approaches), (v) mechanistic modeling using ordinary differential equations (ODEs) and finally (vi) stochastic simulation methods. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | http://www.csb.ethz.ch/education/lectures.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | U. Alon, An introduction to systems biology. Chapman & Hall / CRC, 2006. Z. Szallasi et al. (eds.), System modeling in cellular biology. MIT Press, 2010. B. Ingalls, Mathematical modeling in systems biology: an introduction. MIT Press, 2013 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
376-1714-00L | Biocompatible Materials | W | 4 KP | 3V | K. Maniura, M. Rottmar, M. Zenobi-Wong | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Introduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The course covers the follwing topics: 1. Introdcution into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials. 2. The concept of biocompatibility. 3. Introduction into methodology used in biomaterials research and application. 4. Introduction to different material classes in use for medical applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Introduction into natural and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering, drug delivery and for medical devices are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed. A link between academic research and industrial entrepreneurship is demonstrated by external guest speakers, who present their current research topics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Handouts are deposited online (moodle). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Literature: - Biomaterials Science: An Introduction to Materials in Medicine, Ratner B.D. et al, 3rd Edition, 2013 - Comprehensive Biomaterials, Ducheyne P. et al., 1st Edition, 2011 (available online via ETH library) Handouts and references therin. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0615-01L | Biochemical and Polymer Reaction Engineering | W | 6 KP | 3G | P. Arosio | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Polymerization reactions and processes. Homogeneous and heterogeneous (emulsion) kinetics of free radical polymerization. Post treatment of polymer colloids. Bioprocesses for the production of molecules and therapeutic proteins. Kinetics and design of aggregation processes of macromolecules and proteins. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The aim of the course is to learn how to design polymerization reactors and bioreactors to produce polymers and proteins with the specific product qualities that are required by different applications in chemical, pharmaceutical and food industry. This activity includes the post-treatment of polymer latexes, the downstream processing of proteins and the analysis of their colloidal behavior. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | We will cover the fundamental processes and the operation units involved in the production of polymeric materials and proteins. In particular, the following topics are discussed: Overview on the different polymerization processes. Kinetics of free-radical polymerization and use of population balance models. Production of polymers with controlled characteristics in terms of molecular weight distribution. Kinetics and control of emulsion polymerization. Surfactants and colloidal stability. Aggregation kinetics and aggregate structure in conditions of diffusion and reaction limited aggregation. Modeling and design of colloid aggregation processes. Physico-chemical characterization of proteins and description of enzymatic reactions. Operation units in bioprocessing: upstream, reactor design and downstream. Industrial production of therapeutic proteins. Characterization and engineering of protein aggregation. Protein aggregation in biology and in biotechnology as functional materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Scripts are available on the web page of the Arosio-group: http://www.arosiogroup.ethz.ch/education.html Additional handout of slides will be provided during the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | R.J. Hunter, Foundations of Colloid Science, Oxford University Press, 2nd edition, 2001 D. Ramkrishna, Population Balances, Academic Press, 2000 H.W. Blanch, D. S. Clark, Biochemical Engineering, CRC Press, 1995 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0837-01L | Biomicrofluidic Engineering Number of participants limited to 25. | W | 6 KP | 3G | A. de Mello | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Microfluidics describes the behaviour, control and manipulation of fluids geometrically constrained within sub-uL environments. Microfluidic devices enable physical and chemical processes to be controlled with exquisite precision and in an fast and efficient manner. This course introduces the underlying concepts, features and applications of microfluidic systems in the chemical and life sciences. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | We will investigate the theoretical concepts behind microfluidic device operation, the methods of microfluidic device manufacture and the application of microfluidic architectures to important problems faced in modern day chemical and biological analysis. A central component of this course is a research project. This will allow students to develop a practical understanding of the benefits of miniaturization in chemical and biological experimentation. Projects will be performed in groups of between four and six students and will include both experimental and simulation aspects. Each group, under the guidance of a mentor, will plan and execute a novel research project. The results of this activity will be disseminated through an 'academic-style" research article and a "conference-style" oral presentation. Course grades will be evaluated through both a written exam and the project grade. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Specific topics covered in the course include, but are not limited to: 1. Theoretical Concepts Scaling laws, features of thermal/mass transport, diffusion, basic description of fluid flow in small volumes, microfluidic mixing strategies. 2. Microfluidic Device Manufacture Basic principles of conventional lithography of rigid materials, ‘soft’ lithography, polymer machining (injection molding, hot embossing, and 3D-printing). 3. Electrokinetics Principles of electrophoresis, electroosmosis, high performance capillary electrophoresis, electrokinetic scaling laws, chip-based electrophoresis and isoelectric focusing. 4. Mass Transfer Phenomena Key features of mass transport in microfluidic systems, diffusive transport, diffusion-convection, Péclet number, Taylor-Aris diffusion, chaotic mixing and Damköhler numbers. 5. Heat Transfer Phenomena Key features of thermal transport in microfluidic systems, conduction, convection, heat transfer by convection in internal flows, heat transfer processes in microfluidic devices. 6. Microfluidic Systems for Materials Synthesis Microfluidic reactors for the controlled synthesis of colloidal nanomaterials, advanced automation for bespoke materials discovery & characterization. 7. Point-of-Care Diagnostics Microscale tools for diagnostics, challenges associated with point-of-care (PoC) diagnostic testing, requirements for PoC devices, common PoC device formats, applications of PoC diagnostics in the developing world. 8. Microscale DNA Amplification Amplification and analysis of nucleic acids using batch, continuous flow and droplet-based microfluidic reactors. 9. Small volume Molecular Detection Spectroscopic approaches for analyte detection in small volumes with a particular focus on single molecule detection. 10. Droplets and Segmented Flows Formation, manipulation and use of liquid/liquid segmented flows in chemical and biological experimentation. 11. Single Cell Analysis Applications of microfluidic tools in cellular analysis, flow cytometry, enzymatic assays and single cell analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture handouts, background literature, problem sheets and notes will be provided electronically through the course Moodle site. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | There is no set text for the course. All relevant literature will be provided electronically through the course Moodle site. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0357-00L | Cellular Matters: From Milestones to Open Questions The number of participants is limited to 22 and will only take place with a minimum of 11 participants. Please sign up until two weeks before the beginning of the semester (for Autumn 2022: by 05.09.2022 end of day) via e-mail to bml@ethz.ch using in the subject: 551-0357-00. In the email body indicate 1) your name, 2) your e-mail address, 3) master/PhD program. The students admitted to this seminar will be informed by e-mail in the week prior to the beginning of the semester. The first lecture will serve to form groups of students and assign papers. | W | 4 KP | 2S | Y. Barral, F. Allain, P. Arosio, E. Dufresne, D. Hilvert, M. Jagannathan, R. Mezzenga, T. Michaels, G. Neurohr, R. Riek, A. E. Smith, K. Weis, H. Wennemers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | In this course, the students will explore the quite new topic of biomolecular condensates. Concepts and tools from biology, chemistry, biophysics and soft materials will be used, on one hand, to develop an understanding of the biological properties and functions of biomolecular condensates in health and disease, while, on the other, to inspire new materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | In terms of content, you, the student, after a general introduction to the topic, will learn about milestone works and current research questions in the young field of biomolecular condensates (properties, functions and applications) from an interdisciplinary point of view in a course which is a combination of literature (presentations given by pairs of students with different scientific backgrounds) and research seminars (presentations given by the lecturers all active experts in the field, with different backgrounds and expertise). As to the skills, you will have the opportunity to learn how to critically read and evaluate scientific literature, how to give scientific presentations to an interdisciplinary audience (each presentation consisting of an introduction, critical description of the results and discussion of their significance) and substantiate your statements, acquire a critical mindset (pros/cons of chosen approaches/methods and limitations, quality of the data, solidity of the conclusions, possible follow-up experiments) that allows you to ask relevant questions and actively participate to the discussion. With the final presentation you will have the unique opportunity to interact closely with the interdisciplinary group of lecturers (all internationally well-established experts) who will guide you in the choice of a subtopic and related literature. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | In the last decade a new kind of compartments within the cell, the so-called biomolecular condensates, have been observed. This discovery is radically changing our understanding of the cell, its organization and dynamics. The emerging picture is that the cytoplasm and nucleoplasm are highly complex fluids that can (meta)stably segregate into membrane-less sub-compartments, similarly to emulsions. The topic of biomolecular condensates goes beyond the boundaries of traditional disciplines and needs a multi-pronged approach that levers on, and cross-fertilizes, biology, physical chemistry, biophysics and soft materials to develop a proper understanding of the properties, functions in health and disease (Alzheimer’s, Parkinson’s, etc.), as well as possible applications of these biomolecular condensates. Each week the lecture will consist of: 1) a short literature seminar: Pairs of students from different scientific backgrounds will be formed and assigned beforehand to present milestone literature to the class and facilitate the ensuing discussion. In the first class the pairs will be formed, the milestone papers made known to the whole class and assigned to the pairs. 2) a research seminar: the presentation of the milestone literature will serve as the introduction to the lecture by one of the lecturers of the course on their own state-of-the-art research in the field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | The presentations will be made available after the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | The milestone papers will be provided in advance. For the final examination, the students will be helped by the lecturers in identifying a research topic and related literature. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Umwelt und Energie | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0209-00L | Renewable Energy Technologies | W | 4 KP | 3G | A. Steinfeld, E. Casati | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Renewable energy technologies: solar PV, solar thermal, biomass, wind, geothermal, hydro, waste-to-energy. Focus is on the engineering aspects. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Students learn the potential and limitations of renewable energy technologies and their contribution towards sustainable energy utilization. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture Notes containing copies of the presented slides. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Prerequisite: strong background on the fundamentals of engineering thermodynamics, equivalent to the material taught in the courses Thermodynamics I, II, and III of D-MAVT. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0659-00L | Electrochemistry: Fundamentals, Cells & Applications | W | 6 KP | 3G | L. Gubler | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Introduction to electrochemistry from a physical chemistry point of view, focusing on thermodynamics & kinetics of electrochemical reactions, and engineering aspects of electrochemical cells. The topics are of generic nature yet also discussed in the context of specific applications in industrial electrochemistry, energy storage and conversion, electroanalytical techniques, sensors and corrosion. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The course establishes the fundamentals to understand and describe electrochemical reactions and phenomena related to these. The students are familiarized with key concepts and approaches in electrochemistry and selected aspects of materials science and engineering and how they are put to use in selected applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | - Introduction: important quantities & units, terminology; - Chapter I - Redox reactions, Faraday’s laws; - Chapter II - Equilibrium electrochemistry: cells, galvanic and electrolytic cells, thermodynamic state functions, theoretical cell voltage, half-cell / electrode potential, hydrogen electrode, the electrochemical series, Nernst equation; - Chapter III - Electrodes & interfaces: electrochemical potential, phase potentials, work function, Fermi level, the electrified interface, the electrochemical double layer, reference electrodes and laboratory cells; - Chapter IV - Electrolytes: conductivity, aqueous electrolytes, transference effects, liquid junctions, polymer electrolytes, ion-exchange membranes, Donnan exclusion, solid state ion conductors; - Chapter V - Dynamic electrochemistry: overpotentials, description of charge-transfer reaction, Butler-Volmer and Tafel equation, exchange current density, mass transport limitations; - Chapter VI - Industrial electrochemistry: electrochemical engineering, process and reactor types, current density distribution, porous electrodes, chlor-alkali and HCl electrolysis, oxygen depolarized cathode; - Chapter VII - Energy storage & conversion: important primary and secondary battery chemistries, fuel cells, polymer electrolyte fuel cells, low temperature H2 and O2 electrochemistry, electrocatalysis, triple-phase boundary, solid oxide fuel cell, conversion efficiency; - Chapter VIII - Electroanalytical methods & sensors: potentiometry, amperometry, cyclic and stripping voltammetry, rotating disc electrode studies, electrochemical sensors; - Chapter IX - Corrosion: corrosion reactions, Pourbaix diagram, corrosion potential, passivation, corrosion protection | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | lecture notes, exercise & solutions (PDF files) via download website | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | - C.H. Hamann, A. Hamnett, W. Vielstich, Electrochemistry, Wiley-VCH 2007 (2nd Edition), ISBN: 978-3-527-31069-2 [German version available as well] - T.F. Fuller, J.N. Harb, Electrochemical Engineering, Wiley 2018, ISBN: 978-1-119-00425-7 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Students should be familiar with the fundamentals of physical chemistry. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0745-01L | General and Environmental Toxicology | W | 6 KP | 3V | M. Arand, H. Nägeli | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Verständnis der Chemikalienwirkung auf biologische Systeme. Wertung der Effekte nach verschiedenen biomedizinischen Gesichtspunkten. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Verständnis der Chemikalienwirkung auf biologische Systeme. Wertung der Effekte nach verschiedenen biomedizinischen Gesichtspunkten. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Darstellung der wichtigsten Interaktionen von Fremdstoffen mit zellulären Strukturen wie Membranen, Enzymen und Nukleinsäuren. Bedeutung von Aufnahme, Verteilung, Ausscheidung und chemisch-biologischen Umwandlungsprozessen. Bedeutung von Gemischen. Darstellung wichtiger Toxizitätsmechanismen wie Immunotoxizität, Neurotoxizität, Entwicklungs- und Reproduktionstoxizität oder Gentoxizität anhand von Beispielen von Fremdstoffen und Auswirkungen auf kritische Organe. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Unterlagen werden in der Vorlesung abgegeben. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Lehrbücher in Pharmakologie und Toxikologie (vgl. Liste im Kursmaterial) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Voraussetzungen: Grundlagen in Säugetierbiologie, Chemie und Biochemie | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Anlage- und Verfahrenstechnik | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0109-00L | Turbulent Flows | W | 4 KP | 2V + 1U | P. Jenny | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Inhalt - Laminare und turbulente Strömungen, Turbulenzentstehung - Statistische Beschreibung: Mittelung, Turbulenzenergie, Dissipation, Schliessungsproblem - Skalenbetrachtungen. Homogene isotrope Turbulenz, Korrelationen, Fourierzerlegung, Energiespektrum - Freie Turbulenz. Nachlauf, Freistrahl, Mischungsschicht - Wandturbulenz. Turbulente Grenzschicht, Kanalströmung - Turbulenzberechnung | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Die Vorlesung vermittelt einen Einblick in grundlegende physikalische Phänomene turbulenter Strömungen und in Gesetzmässigkeiten zu ihrer Beschreibung, basierend auf den strömungsmechanischen Grundgleichungen und daraus abgeleiteten Gleichungen. Grundlagen zur Berechnung turbulenter Strömungen und Elemente der Turbulenzmodellierung werden dargestellt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | - Eigenschaften laminarer, transitioneller und turbulenter Strömungen - Turbulenzbeeinflussung und Turbulenzentstehung, hydrodynamische Instabilität und Transition - Statistische Beschreibung: Mittelung, Gleichungen für mittlere Strömung, turbulente Schwankungen, Turbulenzenergie, Reynoldsspannungen, Dissipation. Schliessungsproblem - Skalenbetrachtungen. Homogene isotrope Turbulenz, Korrelationen, Fourierzerlegung, Energiespektrum, Gitterturbulenz - Freie Turbulenz. Nachlauf, Freistrahl, Mischungsschicht - Wandturbulenz. Turbulente Grenzschicht, Kanalströmung - Grundlagen zur Berechnung turbulenter Strömungen und Elemente der Turbulenzmodellierung (Wirbelzähigkeitsmodelle, k-epsilon-Modell). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture notes in English, zusätzliches schriftliches Begleitmaterial auf Deutsch | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | S.B. Pope, Turbulent Flows, Cambridge University Press, 2000 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0611-01L | Molecular Aspects of Catalysts and Surfaces | W | 6 KP | 4G | J. A. van Bokhoven, D. Ferri | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Basic elements of surface science important for materials and catalysis research. Physical and chemical methods important for research in surface science, material science and catalysis are considered and their application is demonstrated on practical examples. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Basic aspects of surface science. Understanding of principles of most important experimental methods used in research concerned with surface science, material science and catalysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Methods which are covered embrace: Gas adsorption and surface area analysis, IR-Spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, X-ray absorption, solid state NMR, Electron Microscopy and others. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Modellierung und Simulation | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0004-01L | Classical Simulation of (Bio)Molecular Systems | W | 6 KP | 4G | P. H. Hünenberger, J. Dolenc, S. Riniker | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Molecular models, classical force fields, configuration sampling, molecular dynamics simulation, boundary conditions, electrostatic interactions, analysis of trajectories, free-energy calculations, structure refinement, applications in chemistry and biology. Exercises: hands-on computer exercises for learning progressively how to perform an analyze classical simulations (using the package GROMOS). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Introduction to classical (atomistic) computer simulation of (bio)molecular systems, development of skills to carry out and interpret these simulations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Molecular models, classical force fields, configuration sampling, molecular dynamics simulation, boundary conditions, electrostatic interactions, analysis of trajectories, free-energy calculations, structure refinement, applications in chemistry and biology. Exercises: hands-on computer exercises for learning progressively how to perform an analyze classical simulations (using the package GROMOS). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | The powerpoint slides of the lectures will be made available weekly on the website in pdf format (on the day preceding each lecture). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | See: www.csms.ethz.ch/education/CSBMS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Since the exercises on the computer do convey and test essentially different skills than those being conveyed during the lectures and tested at the oral exam, the results of the exercises are taken into account when evaluating the results of the exam (learning component, possible bonus of up to 0.25 points on the exam mark). For more information about the lecture: www.csms.ethz.ch/education/CSBMS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Wirtschafts- und Technikmanagement | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
363-0389-00L | Technology and Innovation Management | W | 3 KP | 2G | S. Brusoni, A. Zeijen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course focuses on the analysis of innovation as a pervasive process that cuts across organizational and functional boundaries. It looks at the sources of innovation, at the tools and techniques that organizations deploy to routinely innovate, and the strategic implications of technical change. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | This course intends to enable all students to: - Acquire and understand the basic jargon necessary to discuss, in a precise and concise manner, innovation processes and their outcomes - Analyse the relationship between individual and organizational decision processes and their innovative outcomes - Discuss the relevance and importance of different decision-making criteria, and critically assess their impact on desired innovative outcomes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This course looks at technology and innovation management as a process. Continuously, organizations are faced with a fundamental decision: they have to allocate resources between well-known tasks that reliably generate positive results; or explore new ways of doing things, new technologies, products and services. The latter is a high risk choice. Its rewards can be high, but the chances of success are small. How do firms organize to take these decisions? What kind of management skills are necessary to take them? What kind of tools and methods are deployed to sustain managerial decision-making in highly volatile environments? These are the central questions on which this course focuses, relying on a combination of lectures, case-based discussion, and guest speakers. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Slides will be available on the Moodle page | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Readings will be available on the Moodle page | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The course content and methods are designed for students with some background in management and/or economics | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
363-0565-00L | Principles of Macroeconomics | W | 3 KP | 2V | J.‑E. Sturm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course examines the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates. It tries to answer questions like: How can we explain fluctuations of national economic activity? What can economic policy do against unemployment and inflation? | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | This lecture will introduce the fundamentals of macroeconomic theory and explain their relevance to every-day economic problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This course helps you understand the world in which you live. There are many questions about the macroeconomy that might spark your curiosity. Why are living standards so meagre in many African countries? Why do some countries have high rates of inflation while others have stable prices? Why have some European countries adopted a common currency? These are just a few of the questions that this course will help you answer. Furthermore, this course will give you a better understanding of the potential and limits of economic policy. As a voter, you help choose the policies that guide the allocation of society's resources. When deciding which policies to support, you may find yourself asking various questions about economics. What are the burdens associated with alternative forms of taxation? What are the effects of free trade with other countries? How does the government budget deficit affect the economy? These and similar questions are always on the minds of policy makers. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | The course webpage (to be found at https://moodle-app2.let.ethz.ch/course/view.php?id=17628) contains announcements, course information and lecture slides. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | The set-up of the course will closely follow the book of N. Gregory Mankiw and Mark P. Taylor (2020), Economics, Cengage Learning, Fifth Edition. This book can also be used for the course '363-0503-00L Principles of Microeconomics' (Filippini). Besides this textbook, the slides, lecture notes and problem sets will cover the content of the lecture and the exam questions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
363-0503-00L | Principles of Microeconomics GESS (Science in Perspective): This lecture is for MSc students only. BSc students register for 363-1109-00L Einführung in die Mikroökonomie. | W | 3 KP | 2G | M. Filippini | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course introduces basic principles, problems and approaches of microeconomics. This provides the students with reflective and contextual knowledge on how societies use scarce resources to produce goods and services and ensure a (fair) distribution. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The learning objectives of the course are: (1) Students must be able to discuss basic principles, problems and approaches in microeconomics. (2) Students can analyse and explain simple economic principles in a market using supply and demand graphs. (3) Students can contrast different market structures and describe firm and consumer behaviour. (4) Students can identify market failures such as externalities related to market activities and illustrate how these affect the economy as a whole. (5) Students can also recognize behavioural failures within a market and discuss basic concepts related to behavioural economics. (6) Students can apply simple mathematical concepts on economic problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The resources on our planet are finite. The discipline of microeconomics therefore deals with the question of how society can use scarce resources to produce goods and services and ensure a (fair) distribution. In particular, microeconomics deals with the behaviour of consumers and firms in different market forms. Economic considerations and discussions are not part of classical engineering and science study programme. Thus, the goal of the lecture "Principles of Microeconomics" is to teach students how economic thinking and argumentation works. The course should help the students to look at the contents of their own studies from a different perspective and to be able to critically reflect on economic problems discussed in the society. Topics covered by the course are: - Supply and demand - Consumer demand: neoclassical and behavioural perspective - Cost of production: neoclassical and behavioural perspective - Welfare economics, deadweight losses - Governmental policies - Market failures, common resources and public goods - Public sector, tax system - Market forms (competitive, monopolistic, monopolistic competitive, oligopolistic) - International trade | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture notes, exercises and reference material can be downloaded from Moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | N. Gregory Mankiw and Mark P. Taylor (2020), "Economics", 5th edition, South-Western Cengage Learning. The book can also be used for the course 'Principles of Macroeconomics' (Sturm) For students taking only the course 'Principles of Microeconomics' there is a shorter version of the same book: N. Gregory Mankiw and Mark P. Taylor (2020), "Microeconomics", 5th edition, South-Western Cengage Learning. Complementary: R. Pindyck and D. Rubinfeld (2018), "Microeconomics", 9th edition, Pearson Education. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | GESS (Science in Perspective): This lecture is for MSc students only. BSc students register for 363-1109-00L Einführung in die Mikroökonomie. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Produkte und Materialien | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0619-01L | Chemical Product Design Prerequisites: Basic chemistry and chemical engineering knowledge (Diffusion, Thermodynamics, Kinetics,...). | W | 6 KP | 3G | W. J. Stark | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The 'Chemical Product Design' course teaches students quantitative concepts to analyze, select and transform theoretical concepts from chemistry and engineering into valuable real-world products. Basic chemistry and chemical engineering knowledge is required (Diffusion, Thermodynamics, Kinetics, ..). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | This course starts with analyzing existing chemical needs and unmet technical challenges. We then develop the skills to critically analyze a specific chemical idea for a product, to rapidly test feasibility or chance for success and to eventually realize its manufacturing. The chemical engineering basics are then used to assess performance of products or devices with non-traditional functions based on dynamic properties (e.g. responsive building materials; personal medical diagnostics on paper strips). The course teaches the interface between laboratory and market with a specific focus on evaluating the chemical value of a given process or compound, and the necessary steps to pursue the resulting project within an entrepreneurial environment. We therefore extend the questions of process design ('how do we make something?') to the question of 'what should we make? | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Part A: The 'Chemical Product Design' course starts with discussing questions along, 'What is a chemical product, and why do people pay for it? How does a given compound in a specific setting provide a service?' We then learn how to translate new, often ill-defined wishes or ideas into quantifiable specifications. Part B: Thermodynamic and kinetic data allow sharp selection criteria for successful products. We learn how to deal with insufficient data and development of robust case models to evaluate their technical and financial constraints. How can parameters of a running process in one industry be scaled into another industry? Can dimensionless engineering numbers be applied beyond traditional chemical processes? Part C: Manufacturing of commodity products, devices and molecular products: Chemical reactors, separation and detection or isolation units as part of a toolbox. Planning of manufacturing and decisions based on hard data. Providing quantitative answers on potential value generated. Students are expected to actively develop chemical products along the course. Contributions will be made individually, or in small groups, where a larger topic is studied. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Cussler, E.L., Moggridge, C.D., Chemical Product Design, Cambridge University Press, Cambridge, UK, 2nd edition, 2011. Original Literature: Issues and Trends in the Teaching of Process and Product Design, Biegler, L.T., Grossmann, I.E., Westerber, A.W., AIChE J., 56 (5) 1120-25, 2010. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Prerequisites: Basic chemistry and chemical engineering knowledge (Diffusion, Thermodynamics, Kinetics,...). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prozessentwurf | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0643-01L | Process Design and Development | W | 6 KP | 3G | G. Guillén Gosálbez | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course is focused on the design of Chemical Processes, with emphasis on the preliminary stages of the design approach, where process creation and quick selection among many alternatives are important. The main concepts behind more detailed process design and process simulation are also examined. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The course is focused on the design of Chemical Processes, with emphasis on the preliminary stage of the design approach, where process creation and quick selection among many alternatives are important. The main concepts behind more detailed process design and process simulation are also examined. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Process creation: heuristics vs. mathematical programming. Heuristics for reaction and separation operations, heat transfer and pressure change. Introduction to optimization in process engineering and the modeling software GAMS. Process economic evaluation: equipment sizing and costing, time value of money, cash flow calculations. Process environmental evaluation: Life Cycle Assessment (LCA). Process integration: sequencing of distillation columns using mixed-integer linear programming (MILP), and synthesis of heat exchanger networks using mixed-integer nonlinear programming (MINLP). Batch processes: scheduling, sizing, and inventories. Principles of molecular design using mixed-integer programming. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | no script | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Main books 1. Biegler, L.T., Grossmann, I.E., Westerberg, A.W. Systematic methods of chemical process design, Prentice Hall International PTR (1997). 2. Douglas, J.M. Conceptual design of chemical processes, McGraw-Hill (1988). 3. Seider, W.D., Seader, J.D., Lwin, D.R., Widagdo, S. Product and process design principles: synthesis, analysis, and evaluation, John Wiley & Sons, Inc. (2010). 4. Sinnot, R.K., Towler, G. Chemical Engineering Design, Butterworth-Heinemann (2009). 5. Smith, R. Chemical process design and integration, Wiley (2005). Other references 6. Edgar, T. F., Himmelblau, D. M. Optimization of chemical process, Mcgraw Hill Chemical Engineering Series (2001). 7. Haydary, J. Chemical Process Design and Simulation, Wiley (2019). 8. Turton, R., Shaeiwitz, A., Bhattacharyya, D., Whiting, W. Synthesis and Design of Chemical Processes, Prentice Hall (2013). 9. Klöpffer, W., Grahl, B. Life Cycle Assessment (LCA): A Guide to Best Practice, Wiley (2014). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Prerequisite: Basic knowledge on unit operations, mainly reaction engineering and distillation. It is recommended that the student takes the module "Process Simulation and Flowsheeting" before "Process Design and Development", but it is not mandatory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0613-01L | Process Simulation and Flowsheeting | W | 6 KP | 3G | G. Guillén Gosálbez | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course encompasses the theoretical principles of chemical process simulation and optimization, as well as its practical application in process analysis. The techniques for simulating stationary and dynamic processes are presented, and illustrated with case studies. Commercial software packages (Aspen) are introduced for solving process flowsheeting and optimization problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | This course aims to develop the competency of chemical engineers in process flowsheeting, process simulation and process optimization. Specifically, students will develop the following skills: - Deep understanding of chemical engineering fundamentals: the acquisition of new concepts and the application of previous knowledge in the area of chemical process systems and their mechanisms are crucial to intelligently simulate and evaluate processes. - Modeling of general chemical processes and systems: students should be able to identify the boundaries of the system to be studied and develop the set of relevant mathematical relations, which describe the process behavior. - Mathematical reasoning and computational skills: the familiarization with mathematical algorithms and computational tools is essential to be capable of achieving rapid and reliable solutions to simulation and optimization problems. Hence, students will learn the mathematical principles necessary for process simulation and optimization, as well as the structure and application of process simulation software. Thus, they will be able to develop criteria to correctly use commercial software packages and critically evaluate their results. - Process optimization: the students will learn how to formulate optimization problems in mathematical terms, the main type of optimization problems that exist (i.e., LP, NLP, MILP and MINLP) and the fundamentals of the optimization algorithms implemented in commercial solvers. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Overview of process simulation and flowsheeting: - Definition and fundamentals - Fields of application - Case studies Process simulation: - Modeling strategies of process systems - Mass and energy balances and degrees of freedom of process units and process systems Process flowsheeting: - Flowsheet partitioning and tearing - Solution methods for process flowsheeting - Simultaneous methods - Sequential methods Process optimization and analysis: - Classification of optimization problems - Linear programming, LP - Non-linear programming, NLP - Mixed-integer linear programming, MILP - Mixed-integer nonlinear programming, MINLP Commercial software for simulation (Aspen Plus): - Thermodynamic property methods - Reaction and reactors - Separation / columns - Convergence, optimisation & debugging | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | An exemplary literature list is provided below: - Biegler, L.T., Grossmann, I.E., Westerberg, A.W. Systematic methods of chemical process design, Prentice Hall International PTR (1997). - Douglas, J.M. Conceptual design of chemical processes, McGraw-Hill (1988). - Edgar, T. F., Himmelblau, D. M. Optimization of chemical process, Mcgraw Hill Chemical Engineering Series (2001). - Haydary, J. Chemical Process Design and Simulation, Wiley (2019). - Seider, W.D., Seader, J.D., Lwin, D.R., Widagdo, S. Product and process design principles: synthesis, analysis, and evaluation, John Wiley & Sons, Inc. (2010). - Sinnot, R.K., Towler, G. Chemical Engineering Design, Butterworth-Heinemann (2009). - Smith, R. Chemical process design and integration, Wiley (2005). - Turton, R., A. Shaeiwitz, Bhattacharyya, D., Whiting, W. Synthesis and Design of Chemical Processes, Prentice Hall (2013). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | A basic understanding of material and energy balances, thermodynamic property methods and typical unit operations (e.g., reactors, flash separations, distillation/absorption columns etc.) is required. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Katalyse und Separation | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0927-00L | Rate-Controlled Separations in Fine Chemistry | W | 6 KP | 3V + 1U | M. Mazzotti, V. Becattini | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Die Studenten sollen einen vertieften Einblick in die Grundlagen der Trennverfahren erhalten, die in modernen Life Sciences Prozessen - spez. Feinchemie und Biotechnologie - zur Anwendung kommen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Die Studenten sollen einen vertieften Einblick in die Grundlagen der Trennverfahren erhalten, die in modernen Life Sciences Prozessen - spez. Feinchemie und Biotechnologie - zur Anwendung kommen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The class covers separation techniques that are central in the purification and downstream processing of chemicals and bio-pharmaceuticals. Examples from both areas illustrate the utility of the methods: 1) Adsorption and chromatography; 2) Membrane processes; 3) Crystallization and precipitation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Beilagen in der Vorlesung | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Bücher werden in der Vorlesung besprochen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Besonderes: Teile der Vorlesung werden in Englisch gehalten. Voraussetzungen (empfohlen, nicht obligatorisch): Thermische Verfahrenstechnik I (151-0926-00) und Mathematische Methoden in den Chemieingenieurwissenschaften (151-0940-00) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0617-01L | Catalysis Engineering | W | 6 KP | 3G | J. Pérez-Ramírez, S. J. Mitchell | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Heterogeneous catalysis, an enabling foundation of the chemical industry, spearheads innovation toward key sustainability targets in clean energy, carbon neutrality, and zero waste. The Catalysis Engineering course provides students with concepts bridging from the molecular-level design of catalytic materials to their technical application. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | To accelerate the discovery and implementation of sustainable technologies, this vibrant discipline is constantly refining its design principles, particularly at the nanoscale, a shift facilitated by the availability of increasingly powerful tools that permit the continued development of fundamental knowledge over different time and length scales. During this course, you will learn current concepts for the defossilization of the chemical industry and strategies for achieving this goal from idea to implementation. By introducing topical case studies both in lectures and through a semester project, you will see aspects of catalyst synthesis and characterization, kinetics, mass and heat transport, deactivation and process design, sustainability metrics, and the potential of digital tools to guide catalyst design. Since this area is rapidly advancing and no textbooks are available, the lectures follow slides and journal articles. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The aspects described above will be demonstrated through industrially-relevant examples such as: - Natural gas valorization - CO2 conversion to energy vectors - Plastics upcycling - Concept for a glycerol biorefinery - Halogen chemistry on catalytic surfaces - Ensemble design for selective hydrogenations - Single-atom catalysis - Hierarchical zeolite catalysts A supervised semester project conducted in small groups provides a taster of catalysis research on a timely topic. Students will learn basic skills including critical literature analysis, problem definition and solving, methods of catalyst synthesis, characterization, and testing, and data evaluation and communication through a short talk. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | The course material is based on slides and journal articles. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | It is assumed that students selecting this course are familiar with basic concepts of chemistry and catalysis (chemistry or chemical engineering background). Other students are welcome to contact us to discuss the requirement for prior knowledge. |
- Seite 1 von 1