Suchergebnis: Katalogdaten im Herbstsemester 2022
Chemie Master ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() Den Studierenden stehen der Studienstufe angemessene chemische Lehrangebote des D-CHAB zur Auswahl offen (Zulassungsbedingungen beachten). Bei Unklarheiten das Studiensekretariat kontaktieren. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
529-0143-01L | Aspects of Modern Inorganic Chemistry: Concepts, Building Blocks, and Polymers | W | 6 KP | 3G | H. Grützmacher, J. Grützmacher | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | General bonding concepts AIM and ELF as descriptors of electronic structures GCMT model, carbenes and carbene analogues, homo and heteronuclear unsaturated bonds Electron precise cluster, electron deficient cluster, and special cluster General concepts and definitions of inorganic polymers, polysilanes, polysiloxanes, polyphosphazenes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The course starts with an introduction into general concepts allowing to understand why main group element and transition metal compounds from the higher periods show different properties when compared to their lighter congeners. The Atom in Molecule (AIM) Theory and Electron Localization Function (ELF) will be introduced as means to interpret the electron density distribution in molecules. Carbenes and carbene analogues will be discussed as building blocks for compounds with unsaturated bonds which in turn may serve as precursors to inorganic polymers. Electron counting rules allow to distinguish different type of clusters which can be divided into electron precise cluster, various electron deficient cluster (for example Wade-Mingos-Cluster), and special cluster. An introduction into general concepts for syntheses and analyses of inorganic polymers will be given. Specifically, polysilanes, polysiloxanes, and polyphosphazenes will be discussed and possible applications of these polymers will be highlighted. Recent literature will be provided and discussed jointly by the participants of the course (flipped classroom). The man goal of the lecture is to provide a general understanding of the current literature in the field of modern inorganic chemistry with respect to building blocks used for the synthesis of cluster, polymers, and materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | A handout of the presented material will be distributed to the participants of the course. Articles from recent literature will be provided and discussed in the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Orginal literature is indicated in the course material. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Basis for the understanding of this lecture are the courses Allgemeine Chemie 1&2, and Anorganische Chemie 1: Übergangsmetallchemie. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0243-01L | Transition Metal Catalysis: From Mechanisms to Applications ![]() | W | 6 KP | 3G | B. Morandi | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Detailed discussion of selected modern transition metal catalyzed reactions from a synthetic and mechanistic viewpoint | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Understanding and critical evaluation of current research in transition metal catalysis. Design of mechanistic experiments to elucidate reaction mechanisms. Synthetic relevance of transition metal catalysis. Students will also learn about writing an original research proposal during a workshop. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Detailed discussion of selected modern transition metal catalyzed reactions from a synthetic and mechanistic viewpoint. Synthetic applications of these reactions. Introduction and application of tools for the elucidation of mechanisms. Selected examples of topics include: C-H activation, C-O activation, C-C activation, redox active ligands, main group redox catalysis, bimetallic catalysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture slides will be provided online. A Handout summarizing important concepts in organometallic and physical organic chemistry will also be provided. Useful references and handouts will also be provided during the workshop. Slides will be uploaded 1-2 days before each lecture on http://morandi.ethz.ch/education.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Primary literature and review articles will be cited during the course. The following textbooks can provide useful support for the course: - Anslyn and Dougherty, Modern Physical Organic Chemistry, 1st Ed., University Science Books. - Crabtree R., The Organometallic Chemistry of the Transition Metals, John Wiley & Sons, Inc. - Hartwig J., Organotransition Metal Chemistry: From Bonding to Catalysis, University Science Books. - J. P. Collman, L. S. Hegedus, J. R. Norton, R. G. Finke, Principles and Applications of Organotransition Metal Chemistry. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Required level: Courses in organic and physical chemistry (kinetics in particular) of the first and second year as well as ACIII Special requirement: each participant will have to come up with an independent research proposal to be presented orally (or handed in in written form) at the end of the semester. A dedicated workshop will be organized in the middle of the semester to introduce the students to proposal writing and presentation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0233-01L | Organic Synthesis: Methods and Strategies ![]() | W | 6 KP | 3G | E. M. Carreira | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The complex relation between structural analysis, methods leading to desired transformations, and insight into reaction mechanisms is exemplified. Relations between retrosynthetic analysis of target structures, synthetic methods and their combination in a synthetic strategy. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Extension and deepening of the knowledge in organic synthesis and the principles of structure and reactivity. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Begriffe der Planung (Strategie und Taktik) der organischen Synthese, Retrosynthetische Analyse, Vertiefung der Beziehungen zwischen Struktur und Reaktivität im Zusammenhang mit der Synthese organischer Verbindungen zunehmender Komplexität. Vertiefung und Ergänzung der Kenntnisse synthetischer Methoden. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | K. C. Nicolaou, E. J. Sorensen, Classics in Total Synthesis, Wiley-VCH 1996. K. C. Nicolaou, S. A. Snyder, Classics in Total Synthesis II, Wiley-VCH 2003. K. C. Nicolaou, J. Chen, Classics in Total Synthesis III, Wiley-VCH 2011. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | OC I-IV | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0241-10L | Selectivity in Organic Synthesis | W | 6 KP | 3G | J. W. Bode | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Fundamentals of selective organic reactions, including current and historical examples of enantioselectivity, regioselectivity, chemoselectivity. Further aspects include recent developments in catalysis, strategies and tools for selective organic synthesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Understanding and explaining the origin of selectivity in organic synthesis and the application of selective organic reactions to the construction of complex organic and biological molecules. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Fundamental concepts and recent advances for the selective synthesis of complex organic molecules, including natural products, pharmaceuticals, and biological molecules. Key concepts include the development of enantioselective and regioselective catalysts, the identification of new reaction mechanisms and pathways, and technological advances for facilitating the synthesis of organic molecules. Analysis of key primarily literature including identification of trends, key precendents, and emerging topics will be emphasized. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | will be provided in class and online | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Suggesting Textbooks Anslyn and Dougherty, Modern Physical Organic Chemistry, 1st Ed., University Science Books, 2006. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0240-00L | Chemical Biology - Peptides | W | 6 KP | 3G | H. Wennemers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | An advanced course on the synthesis, properties and function of peptides in chemistry and biology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Knowledge of the synthesis, properties and function of peptides in chemistry and biology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Advanced peptide synthesis, conformational properties, combinatorial chemistry, therapeutic peptides, peptide based materials, peptides in nanotechnology, peptides in asymmetric catalysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Citations from the original literature relevant to the individual lectures will be assigned weekly. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Norbert Sewald, Hans Dieter Jakubke "Peptides: Chemistry and Biology", 1st edition, Wiley VCH, 2002. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0731-00L | Nucleic Acids and Carbohydrates Hinweis für BSc Biologiestudierende: Nur einer der beiden Konzeptkurse 529-0731-00 Nucleic Acids and Carbohydrates (Herbstsemester) oder 529-0732-00 Proteins and Lipids (Frühlingsemester) kann für das Bachelorstudium angerechnet werden. | W | 6 KP | 3G | K. Lang, P. A. Kast, S. J. Sturla, H. Wennemers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Struktur, Funktion und Chemie von Nukleinsäuren und Kohlenhydraten. DNA/RNA Struktur und Synthese; rekombinante DNA Technologie und PCR; DNA Arrays und Genomics; Antisense Ansatz und RNAi; Polymerasen und Transkriptionsfaktoren; katalytische RNA; DNA Schädigung und Reparatur; Kohlenhydratstruktur und Synthese; Kohlenhydratarrays; Cell Surface Engineering; Kohlenhydratimpfstoffe | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Struktur, Funktion und Chemie von Nukleinsäuren und Kohlenhydraten. DNA/RNA Struktur und Synthese; rekombinante DNA Technologie und PCR; DNA Arrays und Genomics; Antisense Ansatz und RNAi; Polymerasen und Transkriptionsfaktoren; katalytische RNA; DNA Schädigung und Reparatur; Kohlenhydratstruktur und Synthese; Kohlenhydratarrays; Cell Surface Engineering; Kohlenhydratimpfstoffe | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Struktur, Funktion und Chemie von Nukleinsäuren und Kohlenhydraten. DNA/RNA Struktur und Synthese; rekombinante DNA Technologie und PCR; DNA Arrays und Genomics; Antisense Ansatz und RNAi; Polymerasen und Transkriptionsfaktoren; katalytische RNA; DNA Schädigung und Reparatur; Kohlenhydratstruktur und Synthese; Kohlenhydratarrays; Cell Surface Engineering; Kohlenhydratimpfstoffe | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Kein Skript; Illustrationen aus der Originalliteratur passend zu den behandelten Themen werden wöchentlich zur Verfügung gestellt (in der Regel als Handouts auf dem Moodle Server). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Hauptsächlich basierend auf Originalliteratur, eine detaillierte Liste wird in der Vorlesung ausgeteilt | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0433-01L | Advanced Physical Chemistry: Statistical Thermodynamics | W | 6 KP | 3G | R. Riek, J. Richardson | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Introduction to statistical mechanics and thermodynamics. Prediction of thermodynamic and kinetic properties from molecular data. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Introduction to statistical mechanics and thermodynamics. Prediction of thermodynamic and kinetic properties from molecular data. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Basics of statistical mechanics and thermodynamics of classical and quantum systems. Concept of ensembles, microcanonical and canonical ensembles, ergodic theorem. Molecular and canonical partition functions and their connection with classical thermodynamics. Quantum statistics. Translational, rotational, vibrational, electronic and nuclear spin partition functions of gases. Determination of the equilibrium constants and (transition-state theory) rates of gas phase reactions. Description of ideal gases and ideal crystals. Lattice models, mixing entropy of polymers, and entropic elasticity. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | See homepage of the lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | See homepage of the lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Chemical Thermodynamics, Reaction Kinetics, Molecular Quantum Mechanics and Spectroscopy; Mathematical Foundations (Analysis, Combinatorial Relations, Integral and Differential Calculus) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0443-01L | Advanced Magnetic Resonance ![]() Findet dieses Semester nicht statt. | W | 6 KP | 3G | G. Jeschke, A. Barnes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course is for advanced students and covers selected topics from magnetic resonance spectroscopy. This semester, the lecture will introduce and discuss the dynamics of electron-nuclear spin systems and experiments based on hyperfine interactions in electron paramagnetic resonance (EPR) spectroscopy and dynamic nuclear polarization (DNP) for sensitivity enhancement in NMR. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The course aims at enabling students to understand and design experiments that are based on hyperfine coupling between electron and nuclear spins. This includes analytical and numerical treatment of spin dynamics as well as instrumental aspects. Additionally, students will learn how to use hyperfine couplings to increase sensitivity in solid state NMR via dynamic nuclear polarization (DNP), with an emphasis on the instrumentation required to perform DNP with magic angle spinning (MAS) NMR. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course starts with a recapitulation of density operator and product operator formalism with special emphasis on electron-nuclear spin systems in the solid state. We then treat basic phenomena, such as passage effects, avoided level crossings, and hyperfine decoupling. Based on these foundations, we discuss polarization transfer from the electron to the nuclear spin and back, as well as spin diffusion as a mechanism for polarizing nuclear spins beyond the immediate vicinity of the electron spin. The second half of the course will cover dynamic nuclear polarization (DNP), with a focus on instrumentation required to perform pulsed DNP with magic angle spinning (MAS) at ultra-high magnetic fields. A review of salient interactions in the NMR solid state NMR Hamiltonian, DNP mechanisms, and electron decoupling with MAS will motivate discussions of technology development. Specific technologies to be covered include, but are not limited to, frequency agile gyrotron oscillators, corrugated waveguides, microwave lenses, strategies for creating pulsed and frequency chirped microwaves, spherical MAS rotors and supporting stators, high temperature superconductor (HTS) based compact magnets, and radio-frequency circuits for multinuclear spin control and detection. Prerequisite: A basic knowledge of Magnetic Resonance, e.g. as covered in the Lecture Physical Chemistry IV, or the book "Spin Dynamics" by Malcolm Levitt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | A script which covers the topics will be distributed in the lecture and will be accessible through the course Moodle | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0027-00L | Advanced Magnetic Resonance - Solid State NMR ![]() | W | 6 KP | 3G | M. Ernst | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course is for advanced students and introduces and discusses the theoretical foundations of solid-state nuclear magnetic resonance (NMR). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The aim of the course is to familiarize the students with the basic concepts of modern high-resolution solid-state NMR. Starting from the mathematical description of spin dynamics, important building blocks for multi-dimensional experiments are discussed to allow students a better understanding of modern solid-state NMR experiments. Particular emphasis is given to achiving high spectral resolution. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The basic principles of NMR in solids will be introduced. After the discussion of basic tools to describe NMR experiments, basic methods and experiments will be discussed, e.g., magic-angle spinning, cross polarization, decoupling, and recoupling experiments. Such basic building blocks allow a tailoring of the effective Hamiltonian to the needs of the experiment. These basic building blocks can then be combined in different ways to obtain spectra that contain the desired information. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | A script which covers the topics will be distributed in the lecture and will be accessible through the web page http://www.ssnmr.ethz.ch/education/ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Prerequisite: A basic knowledge of NMR, e.g. as covered in the Lecture Physical Chemistry IV, or the book by Malcolm Levitt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0043-01L | Analytical Strategy | W | 6 KP | 3G | R. Zenobi, K. Eyer, S. Giannoukos, D. Günther | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Selbständige Erarbeitung von Lösungsvorschlägen für konkrete analytische Fragestellungen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Fähigkeit zur selbständigen Erarbeitung von Lösungsvorschlägen für konkrete analytische Fragestellungen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Selbständiges Erarbeiten von Strategien zum optimalen Einsatz von chemischen, biochemischen und physikalisch-chemischen Methoden der Analytik zur Lösung vorgegebener Probleme. Zusätzlich zu den Dozenten präsentieren Experten aus Industrie und Behörden konkrete analytische Problemstellungen aus ihrem Tätigkeitsbereich. Grundlagen der Probenahme. Aufbau und Einsatz mikroanalytischer Systeme. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Kopien der Aufgabenstellungen und Lösungsblätter werden kostenlos abgegeben | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Teilnahmebedingungen: Besuch der Veranstaltungen 529-0051-00 "Analytische Chemie I (3. Semester)" 529-0058-00 "Analytische Chemie II (4. Semester)" (oder äquivalent) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0049-00L | Analytical Methods for Characterization of Nanoparticles and Nanomaterials Findet dieses Semester nicht statt. | W | 2 KP | 2G | Noch nicht bekannt | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Introduction to modern analytical methods used to fully characterize and identify nano-engineered materials and systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Understanding of analytical concepts used in nanotechnology, In-depth knowledge of most important methods used in industry and research, Introduction to selected industrial applications, Basic knowledge of production mechanisms of nano-engineered materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Nanotechnology is the basis of many main technological innovations of the 21st century. After more than twenty years of research, nanotechnologies are now increasingly employed for commercial use: they are used in hundreds of everyday consumer products, such as cosmetics, food, automotive, electronics and medical products. Nanoparticles can contribute to stronger, lighter, cleaner, smarter, better, etc. products. Besides these positive effects, relatively little is still known about potential health and environmental effects and risks of such small nano-sized particles. Therefore, a lot of different industry customers are forced nowadays to monitor and regulate the size and concentration of nanoparticles in their nano-enabled products. Above and beyond these regulatory requirements, most industries employing nanoparticles need to be able to online measure nanoparticles to meet their requirements towards quality control and production efficiency. All these requirements demand new precise, accurate, fast and innovative analysis methods to fully characterize nanoparticles in real-time and during the manufacturing process. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture notes will be provided | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Prerequisites: 529-0051-00 "Analytical Chemistry I (3. Semester)", 529-0058-00 "Analytical Chemistry II (4. Semester)" (or equivalent) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0733-02L | Chemical Biology and Synthetic Biochemistry | W | 6 KP | 3G | K. Lang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Overview of modern chemical biology and synthetic biochemistry techniques, focussed on protein modification and labeling and on methods to endow proteins with novel functionalities. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | After taking this course, students should be capable of the following: A) Recall different possibilities for modifying proteins in vitro and in vivo and their applications in a biological context, B) Understand the chemical and biochemical consequences of modifications and assess the different reaction possibilities in the context of in vivo - in vitro, C) Critically analyze and assess current chemical biology articles D) Question the approaches learned and apply them to new biological problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | principles of protein labeling and protein modification (fluoresencent proteins, enzyme-mediated labeling, bioorthogonal chemistries); principles of genetic code expansion (amber suppression, orthogonal ribosomes, unnatural base pairs, genome engineering and genome editing); chemical biology of ubiquitin and targeted protein degradation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | A script will not be handed out. Handouts to the lecture will be provided through moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Citations from the original literature relevant to the individual lectures will be assigned during the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Knowledge provided in the bachelor lectures 'Nucleic Acids and Carbohydrates' and 'Proteins and Lipids' is assumed for this lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0209-00L | Renewable Energy Technologies ![]() | W | 4 KP | 3G | A. Steinfeld, E. Casati | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Renewable energy technologies: solar PV, solar thermal, biomass, wind, geothermal, hydro, waste-to-energy. Focus is on the engineering aspects. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Students learn the potential and limitations of renewable energy technologies and their contribution towards sustainable energy utilization. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture Notes containing copies of the presented slides. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Prerequisite: strong background on the fundamentals of engineering thermodynamics, equivalent to the material taught in the courses Thermodynamics I, II, and III of D-MAVT. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0029-01L | Structure Determination | W | 6 KP | 3G | M. D. Wörle, N. Trapp | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Advanced X-ray crystal structure analysis | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Erweitertes Verständnis der in der Kristallstrukturanalyse angewendeten Methoden, Auswertung von Resultaten. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Zusammenfassung der kristallographischen Grundbegriffe und der Prinzipien der Diffraktion. Anorganische Strukturchemie: Packungstypen, Ionenkristalle, covalente Netzwerke, intermetallische Verbindungen. Übersicht über Pulverdiffraktometrie und Anwendung der Kristallchemie in der Strukturanalyse polykristalliner Phasen. Sicheres Arbeiten mit Röntgenstrahlen, Kristallwachstum, Auswahl und Montage auf die Instrumente, Strategien der Diffraktionsmessung, Korrekturen. Lösungsmethoden des kristallographischen Phasenproblems: Pattersonfunktion, Schweratomtechnik, Fouriersynthesen, direkte Methoden. Aufstellung von Strukturmodellen und Verfeinerung, Fehlordnung, Verzwillingung, Symmetrieprobleme, Interpretation anisotroper atomarer Verschiebungsparameter. Interpretation der Resultate und deren Bedeutung für die Chemie, Kontrolle und Publikation der Resultate, kritische Diskussion publizierter Kristallstrukturdaten. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Unterlagen werden in loser Form abgegeben. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Haupttext (1) W. Massa, "Kristallstrukturbestimmung", 7. Auflage, 2011, Teubner. (2) J.D. Dunitz, "X-ray Analysis and the Structure of Organic Molecules", 1995, Verlag HCA. Zusätzliche Literatur (3) C. Hammond, "The Basics of Crystallography and Diffraction", 2nd Ed., 2001, International Union of Crystallography Texts on Crystallography 5, Oxford University Press. (4) J.P. Glusker, M. Lewis & M. Rossi, "Crystal Structure Analysis for Chemists and Biologists", 1994, VCH Publishers. (5) D. Blow, "Outline of Crystallography for Biologists", 2002 Oxford University Press. (6) D. Schwarzenbach, "Kristallographie", 2001, Springer Verlag. (7) C. Giacovazzo, H.L. Monaco, G. Artioli, D. Viterbo, G. Ferraris, G. Gilli, G. Zanotti & M. Catti, Fundamentals of Crystallography", edited by C. Giacovazzo, 2nd Ed., 2002, International Union of Crystallography Texts on Crystallography 7, Oxford University Press. (8) W. Clegg, A.J. Blake, R.O. Gould & P. Main, "Crystal Structure Analysis - Principles and Practice", edited by W. Clegg, 2001, International Union of Crystallography Texts on Crystallography 6, Oxford University Press. (9) J.P. Glusker & K.N. Trueblood, "Crystal Structure Analysis - A Primer", 2nd Ed., 1985, Oxford University Press. (10) G. H. Stout, L. H. Jensen: X-Ray Structure Determination, J. Wiley & Sons, 1989. (11) M. M. Woolfson: X-Ray Crystallography, Cambridge University Press, 1970. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Die einführenden Beispiele und Strukturverfeinerungen können selbst auf Personalcomputer ausgeführt werden. Voraussetzungen: Grundlagen der Kristallstrukturanalyse (529-0039-00L). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
636-0108-00L | Biological Engineering and Biotechnology | W | 4 KP | 3V | M. Fussenegger | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | 1. Insight Into The Mammalian Cell Cycle. Cycling, The Balance Between Proliferation and Cancer - Implications For Biopharmaceutical Manufacturing. 2. The Licence To Kill. Apoptosis Regulatory Networks - Engineering of Survival Pathways To Increase Robustness of Production Cell Lines. 3. Everything Under Control I. Regulated Transgene Expression in Mammalian Cells - Facts and Future. 4. Secretion Engineering. The Traffic Jam getting out of the Cell. 5. From Target To Market. An Antibody's Journey From Cell Culture to The Clinics. 6. Biology and Malign Applications. Do Life Sciences Enable the Development of Biological Weapons? 7. Functional Food. Enjoy your Meal! 8. Industrial Genomics. Getting a Systems View on Nutrition and Health - An Industrial Perspective. 9. IP Management - Food Technology. Protecting Your Knowledge For Business. 10. Biopharmaceutical Manufacturing I. Introduction to Process Development. 11. Biopharmaceutical Manufacturing II. Up- stream Development. 12. Biopharmaceutical Manufacturing III. Downstream Development. 13. Biopharmaceutical Manufacturing IV. Pharma Development. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Handout during the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0003-01L | Advanced Quantum Chemistry | W | 6 KP | 3G | M. Reiher, A. Baiardi | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Advanced, but fundamental topics central to the understanding of theory in chemistry and for solving actual chemical problems with a computer. Examples are: * Operators derived from principles of relativistic quantum mechanics * Relativistic effects + methods of relativistic quantum chemistry * Open-shell molecules + spin-density functional theory * New electron-correlation theories | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The aim of the course is to provide an in-depth knowledge of theory and method development in theoretical chemistry. It will be shown that this is necessary in order to be able to solve actual chemical problems on a computer with quantum chemical methods. The relativistic re-derivation of all concepts known from (nonrelativistic) quantum mechanics and quantum-chemistry lectures will finally explain the form of all operators in the molecular Hamiltonian - usually postulated rather than deduced. From this, we derive operators needed for molecular spectroscopy (like those required by magnetic resonance spectroscopy). Implications of other assumptions in standard non-relativistic quantum chemistry shall be analyzed and understood, too. Examples are the Born-Oppenheimer approximation and the expansion of the electronic wave function in a set of pre-defined many-electron basis functions (Slater determinants). Overcoming these concepts, which are so natural to the theory of chemistry, will provide deeper insights into many-particle quantum mechanics. Also revisiting the workhorse of quantum chemistry, namely density functional theory, with an emphasis on open-shell electronic structures (radicals, transition-metal complexes) will contribute to this endeavor. It will be shown how these insights allow us to make more accurate predictions in chemistry in practice - at the frontier of research in theoretical chemistry. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | 1) Introductory lecture: basics of quantum mechanics and quantum chemistry 2) Einstein's special theory of relativity and the (classical) electromagnetic interaction of two charged particles 3) Klein-Gordon and Dirac equation; the Dirac hydrogen atom 4) Numerical methods based on the Dirac-Fock-Coulomb Hamiltonian, two-component and scalar relativistic Hamiltonians 5) Response theory and molecular properties, derivation of property operators, Breit-Pauli-Hamiltonian 6) Relativistic effects in chemistry and the emergence of spin 7) Spin in density functional theory 8) New electron-correlation theories: Tensor network and matrix product states, the density matrix renormalization group 9) Quantum chemistry without the Born-Oppenheimer approximation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | A set of detailed lecture notes will be provided, which will cover the whole course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | 1) M. Reiher, A. Wolf, Relativistic Quantum Chemistry, Wiley-VCH, 2014, 2nd edition 2) F. Schwabl: Quantenmechanik für Fortgeschrittene (QM II), Springer-Verlag, 1997 [english version available: F. Schwabl, Advanced Quantum Mechanics] 3) R. McWeeny: Methods of Molecular Quantum Mechanics, Academic Press, 1992 4) C. R. Jacob, M. Reiher, Spin in Density-Functional Theory, Int. J. Quantum Chem. 112 (2012) 3661 http://onlinelibrary.wiley.com/doi/10.1002/qua.24309/abstract 5) K. H. Marti, M. Reiher, New Electron Correlation Theories for Transition Metal Chemistry, Phys. Chem. Chem. Phys. 13 (2011) 6750 http://pubs.rsc.org/en/Content/ArticleLanding/2011/CP/c0cp01883j 6) K.H. Marti, M. Reiher, The Density Matrix Renormalization Group Algorithm in Quantum Chemistry, Z. Phys. Chem. 224 (2010) 583 http://www.oldenbourg-link.com/doi/abs/10.1524/zpch.2010.6125 7) E. Mátyus, J. Hutter, U. Müller-Herold, M. Reiher, On the emergence of molecular structure, Phys. Rev. A 83 2011, 052512 http://pra.aps.org/abstract/PRA/v83/i5/e052512 Note also the standard textbooks: A) A. Szabo, N.S. Ostlund. Verlag, Dover Publications B) I. N. Levine, Quantum Chemistry, Pearson C) T. Helgaker, P. Jorgensen, J. Olsen: Molecular Electronic-Structure Theory, Wiley, 2000 D) R.G. Parr, W. Yang: Density-Functional Theory of Atoms and Molecules, Oxford University Press, 1994 E) R.M. Dreizler, E.K.U. Gross: Density Functional Theory, Springer-Verlag, 1990 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Strongly recommended (preparatory) courses are: quantum mechanics and quantum chemistry | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0004-01L | Classical Simulation of (Bio)Molecular Systems ![]() | W | 6 KP | 4G | P. H. Hünenberger, J. Dolenc, S. Riniker | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Molecular models, classical force fields, configuration sampling, molecular dynamics simulation, boundary conditions, electrostatic interactions, analysis of trajectories, free-energy calculations, structure refinement, applications in chemistry and biology. Exercises: hands-on computer exercises for learning progressively how to perform an analyze classical simulations (using the package GROMOS). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Introduction to classical (atomistic) computer simulation of (bio)molecular systems, development of skills to carry out and interpret these simulations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Molecular models, classical force fields, configuration sampling, molecular dynamics simulation, boundary conditions, electrostatic interactions, analysis of trajectories, free-energy calculations, structure refinement, applications in chemistry and biology. Exercises: hands-on computer exercises for learning progressively how to perform an analyze classical simulations (using the package GROMOS). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | The powerpoint slides of the lectures will be made available weekly on the website in pdf format (on the day preceding each lecture). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | See: www.csms.ethz.ch/education/CSBMS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Since the exercises on the computer do convey and test essentially different skills than those being conveyed during the lectures and tested at the oral exam, the results of the exercises are taken into account when evaluating the results of the exam (learning component, possible bonus of up to 0.25 points on the exam mark). For more information about the lecture: www.csms.ethz.ch/education/CSBMS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
327-0703-00L | Electron Microscopy in Material Science | W | 4 KP | 2V + 2U | S. Gerstl, R. Erni, F. Gramm, A. Käch, F. Krumeich, K. Kunze | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | A comprehensive understanding of the interaction of electrons with condensed matter and details on the instrumentation and methods designed to use these probes in the structural and chemical analysis of various materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | A comprehensive understanding of the interaction of electrons with condensed matter and details on the instrumentation and methods designed to use these probes in the structural and chemical analysis of various materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This course provides a general introduction into electron microscopy of organic and inorganic materials. In the first part, the basics of transmission- and scanning electron microscopy are presented. The second part includes the most important aspects of specimen preparation, imaging and image processing. In the third part, recent applications in materials science, solid state physics, structural biology, structural geology and structural chemistry will be reported. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | will be distributed in English | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Goodhew, Humphreys, Beanland: Electron Microscopy and Analysis, 3rd. Ed., CRC Press, 2000 Thomas, Gemming: Analytical Transmission Electron Microscopy - An Introduction for Operators, Springer, Berlin, 2014 Thomas, Gemming: Analytische Transmissionselektronenmikroskopie: Eine Einführung für den Praktiker, Springer, Berlin, 2013 Williams, Carter: Transmission Electron Microscopy, Plenum Press, 1996 Reimer, Kohl: Transmission Electron Microscopy, 5th Ed., Berlin, 2008 Erni: Aberration-corrected imaging in transmission electron microscopy, Imperial College Press (2010, and 2nd ed. 2015) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0468-15L | Nanomaterials for Photonics | W | 6 KP | 2V + 1U | R. Grange | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The lecture describes various nanomaterials (semiconductor, metal, dielectric, carbon-based...) for photonic applications (optoelectronics, plasmonics, ordered and disordered structures...). It starts with concepts of light-matter interactions, then the fabrication methods, the optical characterization techniques, the description of the properties and the state-of-the-art applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The students will acquire theoretical and experimental knowledge about the different types of nanomaterials (semiconductors, metals, dielectric, carbon-based, ...) and their uses as building blocks for advanced applications in photonics (optoelectronics, plasmonics, photonic crystal, ...). Together with the exercises, the students will learn (1) to read, summarize and discuss scientific articles related to the lecture, (2) to estimate order of magnitudes with calculations using the theory seen during the lecture, (3) to prepare a short oral presentation and report about one topic related to the lecture, and (4) to imagine an original photonic device. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | 1. Introduction to nanomaterials for photonics a. Classification of nanomaterials b. Light-matter interaction at the nanoscale c. Examples of nanophotonic devices 2. Wave physics for nanophotonics a. Wavelength, wave equation, wave propagation b. Dispersion relation c. Interference d. Scattering and absorption e. Coherent and incoherent light 3. Analogies between photons and electrons a. Quantum wave description b. How to confine photons and electrons c. Tunneling effects 4. Characterization of Nanomaterials a. Optical microscopy: Bright and dark field, fluorescence, confocal, High resolution: PALM (STORM), STED b. Light scattering techniques: DLS c. Near field microscopy: SNOM d. Electron microscopy: SEM, TEM e. Scanning probe microscopy: STM, AFM f. X-ray diffraction: XRD, EDS 5. Fabrication of nanomaterials a. Top-down approach b. Bottom-up approach 6. Plasmonics a. What is a plasmon, Drude model b. Surface plasmon and localized surface plasmon (sphere, rod, shell) c. Theoretical models to calculate the radiated field: electrostatic approximation and Mie scattering d. Fabrication of plasmonic structures: Chemical synthesis, Nanofabrication e. Applications 7. Organic and inorganic nanomaterials a. Organic quantum-confined structure: nanomers and quantum dots. b. Carbon nanotubes: properties, bandgap description, fabrication c. Graphene: motivation, fabrication, devices d. Nanomarkers for biophotonics 8. Semiconductors a. Crystalline structure, wave function b. Quantum well: energy levels equation, confinement c. Quantum wires, quantum dots d. Optical properties related to quantum confinement e. Example of effects: absorption, photoluminescence f. Solid-state-lasers: edge emitting, surface emitting, quantum cascade 9. Photonic crystals a. Analogy photonic and electronic crystal, in nature b. 1D, 2D, 3D photonic crystal c. Theoretical modelling: frequency and time domain technique d. Features: band gap, local enhancement, superprism... 10. Nanocomposites a. Effective medium regime b. Metamaterials c. Multiple scattering regime d. Complex media: structural colour, random lasers, nonlinear disorder | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Slides and book chapter will be available for downloading | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | References will be given during the lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Basics of solid-state physics (i.e. energy bands) can help | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0745-01L | General and Environmental Toxicology | W | 6 KP | 3V | M. Arand, H. Nägeli | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Verständnis der Chemikalienwirkung auf biologische Systeme. Wertung der Effekte nach verschiedenen biomedizinischen Gesichtspunkten. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Verständnis der Chemikalienwirkung auf biologische Systeme. Wertung der Effekte nach verschiedenen biomedizinischen Gesichtspunkten. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Darstellung der wichtigsten Interaktionen von Fremdstoffen mit zellulären Strukturen wie Membranen, Enzymen und Nukleinsäuren. Bedeutung von Aufnahme, Verteilung, Ausscheidung und chemisch-biologischen Umwandlungsprozessen. Bedeutung von Gemischen. Darstellung wichtiger Toxizitätsmechanismen wie Immunotoxizität, Neurotoxizität, Entwicklungs- und Reproduktionstoxizität oder Gentoxizität anhand von Beispielen von Fremdstoffen und Auswirkungen auf kritische Organe. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Unterlagen werden in der Vorlesung abgegeben. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Lehrbücher in Pharmakologie und Toxikologie (vgl. Liste im Kursmaterial) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Voraussetzungen: Grundlagen in Säugetierbiologie, Chemie und Biochemie |
Seite 1 von 2
Alle