101-0523-14L  Frontiers in Machine Learning Applied to Civil, Env. and Geospatial Engineering

SemesterHerbstsemester 2023
DozierendeV. Ntertimanis, E. Chatzi, F. Corman, I. Hajnsek, M. A. Kraus, M. Lukovic, K. Schindler, B. Soja, M. J. Van Strien
Periodizitäteinmalige Veranstaltung
LehrspracheEnglisch



Lehrveranstaltungen

NummerTitelUmfangDozierende
101-0523-14 GFrontiers in Machine Learning Applied to Civil, Env. and Geospatial Engineering
Remark: Each autumn semester (HS) a new course with a new course number.
1 Std.
Mi/2w13:45-15:30HIL E 10.1 »
V. Ntertimanis, E. Chatzi, F. Corman, I. Hajnsek, M. A. Kraus, M. Lukovic, K. Schindler, B. Soja, M. J. Van Strien

Katalogdaten

KurzbeschreibungThis doctoral seminar organised by the D-BAUG platform on data science and machine learning aims at discussing recent research papers in the field of machine learning and analyzing the transferability/adaptability of the proposed approaches to applications in the field of civil and environmental engineering (if possible and applicable, also implementing the adapted algorithms).
LernzielStudents will
• Critically read scientific papers on the recent developments in machine learning
• Put the research in context
• Present the contributions
• Discuss the validity of the scientific approach
• Evaluate the underlying assumptions
• Evaluate the transferability/adpatability of the proposed approaches to own research
• (Optionally) implement the proposed approaches.
InhaltWith the increasing amount of data collected in various domains, the importance of data science in many disciplines, such as infrastructure monitoring and management, transportation, spatial planning, structural and environmental engineering, has been increasing. The field is constantly developing further with numerous advances, extensions and modifications.
The course aims at discussing recent research papers in the field of machine learning and analyzing the transferability/adaptability of the proposed approaches to applications in the field of civil and environmental engineering (if possible and applicable, also implementing the adapted algorithms).
Each student will select a paper that is relevant for his/her research and present its content in the seminar, putting it into context, analyzing the assumptions, the transferability and generalizability of the proposed approaches. The students will also link the research content of the selected paper to the own research, evaluating the potential of transferring or adapting it. If possible and applicable, the students will also implement the adapted algorithms The students will work in groups of three students, where each of the three students will be reading each other’s selected papers and providing feedback to each other.
Voraussetzungen / BesonderesThis doctoral seminar is intended for doctoral students affiliated with the Department of Civil, Environmental and Geomatic Engineering. Other students who work on related topics need approval by at least one of the organisers to register for the seminar.

Participants are expected to possess elementary skills in statistics, data science and machine learning, including both theory and practical modelling and implementation. The seminar targets students who are actively working on related research projects.

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte1 KP
PrüfendeV. Ntertimanis, E. Chatzi, F. Corman, I. Hajnsek, M. A. Kraus, M. Lukovic, K. Schindler, B. Soja, M. J. Van Strien
Formunbenotete Semesterleistung
PrüfungsspracheEnglisch
RepetitionRepetition nur nach erneuter Belegung der Lerneinheit möglich.

Lernmaterialien

Keine öffentlichen Lernmaterialien verfügbar.
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

StudiengangBereichTyp
Doktorat Bau, Umwelt und GeomatikVertiefung FachwissenWInformation