363-1182-00L  New Technologies in Finance and Insurance

SemesterHerbstsemester 2023
DozierendeB. J. Bergmann, P. Cheridito, P. Kammerlander, J. Teichmann, R. Wattenhofer
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch



Lehrveranstaltungen

NummerTitelUmfangDozierende
363-1182-00 VNew Technologies in Finance and Insurance
The lecture takes place in presence and will be recorded.
2 Std.
Fr14:15-16:00IFW A 36 »
14:15-16:00IFW B 42 »
B. J. Bergmann, P. Cheridito, P. Kammerlander, J. Teichmann, R. Wattenhofer

Katalogdaten

KurzbeschreibungTechnological advances, digitization and the ability to store and process vast amounts of data has changed the landscape of financial services in recent years. This course will unpack these innovations and technologies underlying these transformations and will reflect on the impacts on the financial markets.
LernzielAfter taking this course, students will be able to
- Understand the fundamentals of emerging technologies like supervised learning, unsupervised learning, reinforcement learning or quantum computing.
- understand recent technological developments in financial services and how they drive transformation, e.g. see applications from fraud detection, credit risk assessment, portfolio optimization
- reflect about the challenges of implementing machine learning in finance, e.g. data quality and availability, regulatory compliance, model interpretability and transparency, cybersecurity risks
- understand the importance of continued research and development in machine learning in finance.
InhaltOverall, emerging technologies are transforming the finance and insurance industries by improving efficiency, reducing costs, enhancing customer experiences, and facilitating innovation. Hence, the financial manager of the future is commanding a wide set of skills ranging from a profound understanding of technological advances and a sensible understanding of the impact on workflows and business models.

Students with an interest in finance, banking and insurance are invited to take the course without explicit theoretical knowledge in financial economics. As the course will cover topics like machine learning, cyber security, quantum computing, an understanding of these technologies is welcomed, however not mandatory.

The course will also go beyond technological advances and will also cover management-related contents. Invited guest speakers will contribute to the sessions. In addition, separate networking sessions will provide entry opportunities into finance and banking. Selected guest speakers will cover different application from the field of finance and insurance, e.g.

- Fraud detection: Machine learning algorithms can be trained to identify unusual patterns in financial transactions, helping to detect fraudulent activities.
- Credit scoring: Machine learning can be used to develop more accurate credit scoring models, taking into account a wider range of data points than traditional models.
- Investment analysis: Machine learning can be used to analyze market trends, identify potential investment opportunities, and develop predictive models for asset prices.
- Risk management: Machine learning can be used to model and forecast risk, helping financial institutions to manage and mitigate risk more effectively.

The course is divided in sections, each covering different areas and technologies. Students are asked to solve a short in-class exam and one out of two group exercises cases.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengefördert
Projektmanagementgeprüft
Soziale KompetenzenKommunikationgefördert
Kooperation und Teamarbeitgefördert
Kundenorientierunggefördert
Persönliche KompetenzenAnpassung und Flexibilitätgefördert
Kreatives Denkengefördert
Selbststeuerung und Selbstmanagement gefördert

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte3 KP
PrüfendeP. Cheridito, B. J. Bergmann, P. Kammerlander, J. Teichmann, R. Wattenhofer
Formbenotete Semesterleistung
PrüfungsspracheEnglisch
RepetitionRepetition nur nach erneuter Belegung der Lerneinheit möglich.

Lernmaterialien

Keine öffentlichen Lernmaterialien verfügbar.
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

StudiengangBereichTyp
Management, Technologie und Ökonomie MasterFinance and InvestmentWInformation