401-3622-DRL  Statistical Modelling

SemesterAutumn Semester 2023
LecturersM. Kalisch
Periodicityyearly recurring course
Language of instructionEnglish
CommentOnly for ZGSM (ETH D-MATH and UZH I-MATH) doctoral students. The latter need to register at myStudies and then send an email to info@zgsm.ch with their name, course number and student ID. Please see https://zgsm.math.uzh.ch/index.php?id=forum0



Courses

NumberTitleHoursLecturers
401-3622-00 GStatistical Modelling4 hrs
Mon10:15-12:00ML D 28 »
Thu14:15-16:00HG E 1.1 »
M. Kalisch

Catalogue data

AbstractIn regression, the dependency of a random response variable on other variables is examined. We consider the theory of linear regression with one or more covariates, high-dimensional linear models, nonlinear models and generalized linear models, model choice and nonparametric models. Several numerical examples will illustrate the theory.
Learning objective- Thorough, theoretical understanding of linear regression
- Overview of several extensions of linear regression
- Ability to correctly apply the methods learned in simple data examples
ContentIn der Regression wird die Abhängigkeit einer beobachteten quantitativen Grösse von einer oder mehreren anderen (unter Berücksichtigung zufälliger Fehler) untersucht. Themen der Vorlesung sind: Einfache und multiple Regression, Theorie allgemeiner linearer Modelle, Hoch-dimensionale Modelle, Ausblick auf nichtlineare Modelle, Modellsuche, Residuenanalyse, nicht-parametrische Regression. Durchrechnung und Diskussion von Anwendungsbeispielen.
Prerequisites / NoticeThis is the course unit with former course title "Regression".
Credits cannot be recognised for both courses 401-3622-00L Statistical Modelling and 401-0649-00L Applied Statistical Regression in the Mathematics Bachelor and Master programmes (to be precise: one course in the Bachelor and the other course in the Master is also forbidden).
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Problem-solvingassessed
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingfostered
Critical Thinkingassessed
Self-direction and Self-management fostered

Performance assessment

Performance assessment information (valid until the course unit is held again)
Performance assessment as a semester course
ECTS credits2 credits
ExaminersM. Kalisch
Typegraded semester performance
Language of examinationEnglish
RepetitionRepetition only possible after re-enrolling for the course unit.

Learning materials

No public learning materials available.
Only public learning materials are listed.

Groups

No information on groups available.

Restrictions

PriorityRegistration for the course unit is only possible for the primary target group
Primary target groupDoctorate Mathematics (439002)
Doctorate Computational Science and Engineering (439102)

Offered in

ProgrammeSectionType
Doctorate MathematicsGraduate SchoolWInformation