401-4944-DRL  Mathematics of Data Science

SemesterAutumn Semester 2023
LecturersA. Bandeira, A. Maillard
Periodicityyearly recurring course
Language of instructionEnglish
CommentOnly for ZGSM (ETH D-MATH and UZH I-MATH) doctoral students. The latter need to register at myStudies and then send an email to info@zgsm.ch with their name, course number and student ID. Please see https://zgsm.math.uzh.ch/index.php?id=forum0



Courses

NumberTitleHoursLecturers
401-4944-20 GMathematics of Data Science4 hrs
Thu12:15-14:00HG G 3 »
Fri10:15-12:00HG F 3 »
A. Bandeira, A. Maillard

Catalogue data

AbstractMostly self-contained, but fast-paced, introductory masters level course on various theoretical aspects of algorithms that aim to extract information from data.
Learning objectiveIntroduction to various mathematical aspects of Data Science.
ContentThese topics lie in overlaps of (Applied) Mathematics with: Computer Science, Electrical Engineering, Statistics, and/or Operations Research. Each lecture will feature a couple of Mathematical Open Problem(s) related to Data Science. The main mathematical tools used will be Probability and Linear Algebra, and a basic familiarity with these subjects is required. There will also be some (although knowledge of these tools is not assumed) Graph Theory, Representation Theory, Applied Harmonic Analysis, among others. The topics treated will include Dimension reduction, Manifold learning, Sparse recovery, Random Matrices, Approximation Algorithms, Community detection in graphs, and several others.
Lecture noteshttps://people.math.ethz.ch/~abandeira/BandeiraSingerStrohmer-MDS-draft.pdf
Prerequisites / NoticeThe main mathematical tools used will be Probability, Linear Algebra (and real analysis), and a working knowledge of these subjects is required. In addition
to these prerequisites, this class requires a certain degree of mathematical maturity--including abstract thinking and the ability to understand and write proofs.


We encourage students who are interested in mathematical data science to take both this course and ``227-0434-10L Mathematics of Information'' taught by Prof. H. Bölcskei. The two courses are designed to be
complementary.
A. Bandeira and H. Bölcskei

Performance assessment

Performance assessment information (valid until the course unit is held again)
Performance assessment as a semester course
ECTS credits2 credits
ExaminersA. Bandeira, A. Maillard
Typeungraded semester performance
Language of examinationEnglish
RepetitionRepetition only possible after re-enrolling for the course unit.

Learning materials

No public learning materials available.
Only public learning materials are listed.

Groups

No information on groups available.

Restrictions

PriorityRegistration for the course unit is only possible for the primary target group
Primary target groupDoctorate Mathematics (439002)
Doctorate Computational Science and Engineering (439102)

Offered in

ProgrammeSectionType
Doctorate MathematicsGraduate SchoolWInformation