401-0102-00L  Applied Multivariate Statistics

SemesterFrühjahrssemester 2023
DozierendeF. Sigrist
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch



Lehrveranstaltungen

NummerTitelUmfangDozierende
401-0102-00 VApplied Multivariate Statistics2 Std.
Mo14:15-16:00HG E 1.2 »
F. Sigrist
401-0102-00 UApplied Multivariate Statistics1 Std.
Mo/2w10:15-12:00HG E 1.1 »
15.05.12:15-14:00HG E 1.1 »
F. Sigrist

Katalogdaten

KurzbeschreibungMultivariate statistics analyzes data on several random variables simultaneously. This course introduces the basic concepts and provides an overview of classical and modern methods of multivariate statistics including visualization, dimension reduction, supervised and unsupervised learning for multivariate data. An emphasis is on applications and solving problems with the statistical software R.
LernzielAfter the course, you are able to:
- describe the various methods and the concepts behind them
- identify adequate methods for a given statistical problem
- use the statistical software R to efficiently apply these methods
- interpret the output of these methods
InhaltVisualization, multivariate outliers, the multivariate normal distribution, dimension reduction, principal component analysis, multidimensional scaling, factor analysis, cluster analysis, classification, multivariate tests and multiple testing
SkriptNone
Literatur1) "An Introduction to Applied Multivariate Analysis with R" (2011) by Everitt and Hothorn
2) "An Introduction to Statistical Learning: With Applications in R" (2013) by Gareth, Witten, Hastie and Tibshirani

Electronic versions (pdf) of both books can be downloaded for free from the ETH library.
Voraussetzungen / BesonderesThis course is targeted at students with a non-math background.

Requirements:
==========
1) Introductory course in statistics (min: t-test, regression; ideal: conditional probability, multiple regression)
2) Good understanding of R (if you don't know R, it is recommended that you study chapters 1,2,3,4, and 5 of "Introductory Statistics with R" from Peter Dalgaard, which is freely available online from the ETH library)

An alternative course with more emphasis on theory is 401-6102-00L "Multivariate Statistics" (only every second year).

401-0102-00L and 401-6102-00L are mutually exclusive. You can register for only one of these two courses.

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte5 KP
PrüfendeF. Sigrist
FormSessionsprüfung
PrüfungsspracheEnglisch
RepetitionDie Leistungskontrolle wird nur in der Session nach der Lerneinheit angeboten. Die Repetition ist nur nach erneuter Belegung möglich.
Prüfungsmodusschriftlich 120 Minuten
Hilfsmittel schriftlichClosed book; simple pocket calculator with no communication capability
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan.

Lernmaterialien

Keine öffentlichen Lernmaterialien verfügbar.
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

StudiengangBereichTyp
Biologie MasterWahlpflicht MasterkurseWInformation
Biologie MasterWahlpflicht Masterkurse I: RechnergestützWInformation
DAS in Data ScienceStatisticsWInformation
Umweltnaturwissenschaften BachelorMethoden der statistischen DatenanalyseWInformation