151-0073-20L SURF‐eDNA
Semester | Autumn Semester 2022 |
Lecturers | R. Katzschmann |
Periodicity | non-recurring course |
Language of instruction | English |
Comment | This course is part of a one-year course. The 14 credit points will be issued at the end of FS2023 with new enrolling for the same Focus Project in FS2023. For MAVT BSc and ITET BSc only. Prerequisites for the focus projects: a. Basis examination successfully passed b. Block 1 and 2 successfully passed For enrollment, please contact the D-MAVT Student Administration. |
Abstract | Students create a biomimetic underwater system capable of the autonomous collection of information about biodiversity in aquatic ecosystems. The students learn to work in teams, structure problems, identify solutions, perform system analysis, and present. They have access to rapid prototyping facilities and the latest engineering tools. | ||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | ||||||||||||||||||||||||||||||||||||||||||||||||
Content | SURF-eDNA integrates an environmental DNA (eDNA) filter, camera, and swimming autonomy into a biomimetic soft underwater robotic fish (SURF). The goal of the project is to create a biomimetic underwater system capable of the autonomous collection of information about biodiversity in aquatic ecosystems. The system has to be minimally invasive and disruptive to the ecosystem it will be deployed in, therefore it has to employ a nature-mimicking locomotion modality. The project is run by a team of eight students in their third year of bachelor at MAVT/ITET at ETH Zürich. The team is managed by team from the Soft Robotics Lab. The target date for a successful research demonstration is end of May 2023. The project is split into three work packages: 1) design a robotic fish for underwater sampling; 2) manufacture several robotic prototypes; and 3) provide the system with Autonomy and data collection capability. If you like to learn more about this project, please email Prof. Robert Katzschmann (rkk@ethz.ch). | ||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Basics of control theory, machine design, and dynamics. Previous exposure to mechatronics or robotic systems will also be helpful. | ||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
|