529-0643-01L Process Design and Development
Semester | Herbstsemester 2022 |
Dozierende | G. Guillén Gosálbez |
Periodizität | jährlich wiederkehrende Veranstaltung |
Lehrsprache | Englisch |
Kurzbeschreibung | The course is focused on the design of Chemical Processes, with emphasis on the preliminary stages of the design approach, where process creation and quick selection among many alternatives are important. The main concepts behind more detailed process design and process simulation are also examined. |
Lernziel | The course is focused on the design of Chemical Processes, with emphasis on the preliminary stage of the design approach, where process creation and quick selection among many alternatives are important. The main concepts behind more detailed process design and process simulation are also examined. |
Inhalt | Process creation: heuristics vs. mathematical programming. Heuristics for reaction and separation operations, heat transfer and pressure change. Introduction to optimization in process engineering and the modeling software GAMS. Process economic evaluation: equipment sizing and costing, time value of money, cash flow calculations. Process environmental evaluation: Life Cycle Assessment (LCA). Process integration: sequencing of distillation columns using mixed-integer linear programming (MILP), and synthesis of heat exchanger networks using mixed-integer nonlinear programming (MINLP). Batch processes: scheduling, sizing, and inventories. Principles of molecular design using mixed-integer programming. |
Skript | no script |
Literatur | Main books 1. Biegler, L.T., Grossmann, I.E., Westerberg, A.W. Systematic methods of chemical process design, Prentice Hall International PTR (1997). 2. Douglas, J.M. Conceptual design of chemical processes, McGraw-Hill (1988). 3. Seider, W.D., Seader, J.D., Lwin, D.R., Widagdo, S. Product and process design principles: synthesis, analysis, and evaluation, John Wiley & Sons, Inc. (2010). 4. Sinnot, R.K., Towler, G. Chemical Engineering Design, Butterworth-Heinemann (2009). 5. Smith, R. Chemical process design and integration, Wiley (2005). Other references 6. Edgar, T. F., Himmelblau, D. M. Optimization of chemical process, Mcgraw Hill Chemical Engineering Series (2001). 7. Haydary, J. Chemical Process Design and Simulation, Wiley (2019). 8. Turton, R., Shaeiwitz, A., Bhattacharyya, D., Whiting, W. Synthesis and Design of Chemical Processes, Prentice Hall (2013). 9. Klöpffer, W., Grahl, B. Life Cycle Assessment (LCA): A Guide to Best Practice, Wiley (2014). |
Voraussetzungen / Besonderes | Prerequisite: Basic knowledge on unit operations, mainly reaction engineering and distillation. It is recommended that the student takes the module "Process Simulation and Flowsheeting" before "Process Design and Development", but it is not mandatory. |