227-0423-00L  Neural Network Theory

SemesterHerbstsemester 2022
DozierendeH. Bölcskei
Periodizitätjährlich wiederkehrende Veranstaltung
LehrveranstaltungFindet dieses Semester nicht statt.
LehrspracheEnglisch


KurzbeschreibungThe class focuses on fundamental mathematical aspects of neural networks with an emphasis on deep networks: Universal approximation theorems, capacity of separating surfaces, generalization, fundamental limits of deep neural network learning, VC dimension.
LernzielAfter attending this lecture, participating in the exercise sessions, and working on the homework problem sets, students will have acquired a working knowledge of the mathematical foundations of neural networks.
Inhalt1. Universal approximation with single- and multi-layer networks

2. Introduction to approximation theory: Fundamental limits on compressibility of signal classes, Kolmogorov epsilon-entropy of signal classes, non-linear approximation theory

3. Fundamental limits of deep neural network learning

4. Geometry of decision surfaces

5. Separating capacity of nonlinear decision surfaces

6. Vapnik-Chervonenkis (VC) dimension

7. VC dimension of neural networks

8. Generalization error in neural network learning
SkriptDetailed lecture notes are available on the course web page
https://www.mins.ee.ethz.ch/teaching/nnt/
Voraussetzungen / BesonderesThis course is aimed at students with a strong mathematical background in general, and in linear algebra, analysis, and probability theory in particular.