701-2413-00L  Evolutionary Genetics

SemesterAutumn Semester 2022
LecturersT. Städler, A. Widmer, S. Fior, M. Fischer, J. Stapley
Periodicityyearly recurring course
Language of instructionEnglish


AbstractThe concept course 'Evolutionary Genetics' consists of two lectures that jointly provide an introduction to the fields of population and quantitative genetics (emphasis on basic concepts) and ecological genetics (more emphasis on evolutionary and ecological processes of adaptation and speciation).
Learning objectiveThe aim of the course is to provide students with a solid introduction to the fields of population genetics, quantitative genetics, and ecological genetics. The concepts and research methods developed in these fields have undergone profound transformations; they are of fundamental importance in our understanding of evolutionary processes, both past and present. Students should gain an appreciation for the concepts, methods and explanatory power of evolutionary genetics.
ContentPopulation genetics - Types and sources of genetic variation; randomly mating populations and the Hardy-Weinberg equilibrium; effects of inbreeding; natural selection; random genetic drift and effective population size; gene flow and hierarchical population structure; molecular population genetics: neutral theory of molecular evolution and basics of coalescent theory.
Quantitative genetics - Continuous variation; measurement of quant. characters; genes, environments and their interactions; measuring their influence; response to selection; inbreeding and crossbreeding, effects on fitness; Fisher's fundamental theorem.
Ecological Genetics - Concepts and methods for the study of genetic variation and its role in adaptation, reproductive isolation, hybridization and speciation
Lecture notesHandouts
LiteratureHamilton, M.B. 2009. Population Genetics. Wiley-Blackwell, Chichester, U.K.