529-0431-AAL  Physical Chemistry III: Molecular Quantum Mechanics

SemesterAutumn Semester 2022
LecturersF. Merkt
Periodicityevery semester recurring course
Language of instructionEnglish
CommentEnrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

This course does not offer a lecture of its own but it is linked to the course 529-0431-00L.


AbstractPostulates of quantum mechanics, operator algebra, Schrödinger's equation, state functions and expectation values, matrix representation of operators, particle in a box, tunneling, harmonic oscillator, molecular vibrations, angular momentum and spin, generalised Pauli principle, perturbation theory, electronic structure of atoms and molecules, Born-Oppenheimer approximation.
ObjectiveThis is an introductory course in quantum mechanics. The course starts with an overview of the fundamental concepts of quantum mechanics and introduces the mathematical formalism. The postulates and theorems of quantum mechanics are discussed in the context of experimental and numerical determination of physical quantities. The course develops the tools necessary for the understanding and calculation of elementary quantum phenomena in atoms and molecules.
ContentPostulates and theorems of quantum mechanics: operator algebra, Schrödinger's equation, state functions and expectation values. Linear motions: free particles, particle in a box, quantum mechanical tunneling, the harmonic oscillator and molecular vibrations. Angular momentum: electronic spin and orbital motion, molecular rotations. Electronic structure of atoms and molecules: the Pauli principle, angular momentum coupling, the Born-Oppenheimer approximation. Variational principle and perturbation theory. Discussion of bigger systems (solids, nano-structures).
LiteratureAtkins, Peter W., and Ronald Friedman. Molecular Quantum Mechanics. 5th ed. Oxford: Oxford University Press, 2011.

Townsend, John Sealy, and John S. Townsend. A Modern Approach to Quantum Mechanics. 2nd ed. Mill Valley, Calif: University Science Books, 2012.