Only for Electrical Engineering and Information Technology BSc.
The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
Courses
Number
Title
Hours
Lecturers
227-0085-16 P
Projekte & Seminare: Machine Learning for Brain-Computer Interfaces
Für den Zugang zum Angebot und zur Einschreibung loggen Sie sich hier ein (mit Ihrem n.ETHZ account): https://psapp.ee.ethz.ch/ Bitte beachten Sie, dass die Seite jeweils erst zwei Wochen vor Semesterbeginn zugänglich ist und im Verlauf des Semesters wieder abgeschaltet wird. Die Einschreibung ist nur von Freitag vor Semesterbeginn bis zum ersten Freitagmittag im Semester möglich.
To access the offer and to enroll for courses log in (with your n.ethz account): https://psapp.ee.ethz.ch/ Please note that the P&S-site is accessible no earlier than two weeks before the start of the semester until four weeks after the start of the semester. Enrollment is only possible from Friday before the start of the semester until noon of the first Friday in the semester.
The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
Learning objective
A brain-computer interface (BCI) provides a communication and control channel based on the recognition of subject’s intention from spatiotemporal activity of the brain. A typical method to acquire neural activity signals is electroencephalograhy (EEG), which is often used in BCI. In order to make these data usable and get useful information out of them, signal processing techniques play a crucial role. Moreover, feature extraction and machine learning methods are applied to obtain a highly accurate BCI.
The aim of the Project and Seminars course is to give insights of signal processing and machine learning applied to brain-computer interfaces to undergraduate students, by having hands-on experience in brain signal acquisition, data processing, feature extraction, and machine learning.
Performance assessment
Performance assessment information (valid until the course unit is held again)