151-0325-00L  Planning and Decision Making for Autonomous Robots

SemesterHerbstsemester 2022
DozierendeE. Frazzoli
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch



Lehrveranstaltungen

NummerTitelUmfangDozierende
151-0325-00 VPlanning and Decision Making for Autonomous Robots
This course starts in the second week of the Semester.
2 Std.
Mi10:15-12:00HG E 3 »
E. Frazzoli
151-0325-00 UPlanning and Decision Making for Autonomous Robots
This course starts in the second week of the Semester.
1 Std.
Mi12:15-13:00HG F 1 »
E. Frazzoli

Katalogdaten

KurzbeschreibungPlanning safe and efficient motions for robots in complex environments, often shared with humans and other robots, is a difficult problem combining discrete and continuous mathematics, as well as probabilistic, game-theoretic, and ethical/regulatory aspects. This course will cover the algorithmic foundations of motion planning, with an eye to real-world implementation issues.
LernzielThe students will learn how to design and implement state-of-the-art algorithms for planning the motion of robots executing challenging tasks in complex environments.
InhaltDiscrete planning, shortest path problems. Planning under uncertainty. Game-theoretic planning. Geometric Representations. Steering methods. Configuration space and collision checking. Potential and Navigation functions. Grids, lattices, visibility graphs. Mathematical Programming. Sampling-based methods. Planning with limited information. Multi-agent Planning.
SkriptCourse notes and other education material will be provided for free in an electronic form.
LiteraturThere is no required textbook, but an excellent reference is Steve Lavalle's book on "Planning Algorithms."
Voraussetzungen / BesonderesStudents should have taken basic courses in optimization, control systems, probability theory, and should be familiar with modern programming languages and practices (e.g., Python, and/or C/C++). Previous exposure to robotic systems is a definite advantage.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte4 KP
PrüfendeE. Frazzoli
Formbenotete Semesterleistung
PrüfungsspracheEnglisch
RepetitionRepetition nur nach erneuter Belegung der Lerneinheit möglich.

Lernmaterialien

Keine öffentlichen Lernmaterialien verfügbar.
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

StudiengangBereichTyp
Maschineningenieurwissenschaften MasterRobotics, Systems and ControlWInformation
Robotics, Systems and Control MasterKernfächerWInformation