876-0201-00L  Technology and Policy Analysis

SemesterHerbstsemester 2022
DozierendeT. Schmidt, E. Ash, F. M. Egli, R. Garrett, M. Leese, A. Rom, B. Steffen
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch



Lehrveranstaltungen

NummerTitelUmfangDozierende
876-0201-00 GTechnology and Policy Analysis75s Std.
02.09.09:00-18:00ON LI NE »
03.09.09:15-17:00HG E 33.1 »
16.09.09:15-18:00HG E 33.1 »
17.09.09:00-17:00ON LI NE »
07.10.09:15-18:00HG E 23 »
14:15-18:00HG E 33.5 »
08.10.09:15-17:00HG E 23 »
09:15-17:00HG E 33.5 »
21.10.09:15-18:00HG E 23 »
22.10.09:00-17:00ON LI NE »
03.11.09:15-18:00HG F 26.3 »
04.11.09:15-18:00HG F 26.3 »
05.11.08:15-17:00HG F 26.3 »
T. Schmidt, E. Ash, F. M. Egli, R. Garrett, M. Leese, A. Rom, B. Steffen

Katalogdaten

KurzbeschreibungTechnologies substantially affect the way we live and how our societies function. Technological change, i.e. the innovation and diffusion of new technologies, is a fundamental driver of economic growth but can also have detrimental side effects. This module introduces methods to assess technology-related policy alternatives and to analyse how policies affect technological changes and society.
LernzielIntroduction:
Participants understand (1) what ex ante and ex post policy impact analysis is, (2) in what forms and with what methods they can be undertaken, (3) why they are important for evidence-​based policy-​making.
Analysis of Policy and Technology Options:
Participants understand (1) how to perform policy analyses related to technology; (2) a policy problem and the rationale for policy intervention; (3) how to select appropriate impact categories and methods to address a policy problem through policy analysis; (4) how to assess policy alternatives, using various ex ante policy analysis methods; (5) and how to communicate the results of the analysis.
Evaluation of Policy Outcomes:
Participants understand (1) when and why policy outcomes can be evaluated based on observational or experimental methods, (2) basic methods for evaluating policy outcomes (e.g. causal inference methods and field experiments), (3) how to apply concepts and methods of policy outcome evaluation to specific cases of interest.
Big Data Approaches to Policy Analysis:
Participants understand (1) why "big data" techniques for making policy-​relevant assessments and predictions are useful, and under what conditions, (2) key techniques in this area, such as procuring big datasets; pre-​processing and dimension reduction of massive datasets for tractable computation; machine learning for predicting outcomes; interpreting machine learning model predictions to understand what is going on inside the black box; data visualization including interactive web apps.
LiteraturCourse materials can be found on Moodle.

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte8 KP
PrüfendeT. Schmidt, E. Ash, F. M. Egli, R. Garrett, M. Leese, A. Rom, B. Steffen
Formbenotete Semesterleistung
PrüfungsspracheEnglisch
RepetitionRepetition ohne erneute Belegung der Lerneinheit möglich.

Lernmaterialien

Keine öffentlichen Lernmaterialien verfügbar.
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

VorrangDie Belegung der Lerneinheit ist nur durch die primäre Zielgruppe möglich
Primäre ZielgruppeCAS ETH Technol. & Public Policy: Impact Analysis (876000)
MAS ETH in Technology and Public Policy (877000)

Angeboten in

StudiengangBereichTyp
CAS in Technology and Public Policy: Impact AnalysisModuleOInformation
MAS in Technology and Public PolicyImpact AnalysisOInformation