227-0101-00L  Discrete-Time and Statistical Signal Processing

SemesterHerbstsemester 2022
DozierendeH.‑A. Loeliger
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch



Lehrveranstaltungen

NummerTitelUmfangDozierende
227-0101-00 GDiscrete-Time and Statistical Signal Processing4 Std.
Di14:15-18:00HG F 3 »
20.09.14:15-18:00HG D 1.2 »
H.‑A. Loeliger

Katalogdaten

KurzbeschreibungThe course is about some fundamental topics of digital signal processing with a bias towards applications in communications: discrete-time linear filters, inverse filters and equalization, DFT, discrete-time stochastic processes, elements of detection theory and estimation theory, LMMSE estimation and LMMSE filtering, LMS algorithm, Viterbi algorithm.
LernzielThe course is about some fundamental topics of digital signal processing with a bias towards applications in communications. The two main themes are linearity and probability. In the first part of the course, we deepen our understanding of discrete-time linear filters. In the second part of the course, we review the basics of probability theory and discrete-time stochastic processes. We then discuss some basic concepts of detection theory and estimation theory, as well as some practical methods including LMMSE estimation and LMMSE filtering, the LMS algorithm, and the Viterbi algorithm. A recurrent theme throughout the course is the stable and robust "inversion" of a linear filter.
Inhalt1. Discrete-time linear systems and filters:
state-space realizations, z-transform and spectrum,
decimation and interpolation, digital filter design,
stable realizations and robust inversion.

2. The discrete Fourier transform and its use for digital filtering.

3. The statistical perspective:
probability, random variables, discrete-time stochastic processes;
detection and estimation: MAP, ML, Bayesian MMSE, LMMSE;
Wiener filter, LMS adaptive filter, Viterbi algorithm.
SkriptLecture Notes

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte6 KP
PrüfendeH.-A. Loeliger
FormSessionsprüfung
PrüfungsspracheEnglisch
RepetitionDie Leistungskontrolle wird in jeder Session angeboten. Die Repetition ist ohne erneute Belegung der Lerneinheit möglich.
Prüfungsmodusschriftlich 180 Minuten
Hilfsmittel schriftlichLecture Notes (not including problems and solutions) and personal notes (max. 4 pages). No electronic devices. (Pocket calculators will be handed out, if necessary.)
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan.

Lernmaterialien

 
Hauptlinkhttp://www.isi.ee.ethz.ch/teaching/courses/dssp
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

StudiengangBereichTyp
Data Science MasterWählbare KernfächerWInformation
Elektrotechnik und Informationstechnologie Bachelor5. Semester: Kernfächer des 3. JahresWInformation
Elektrotechnik und Informationstechnologie MasterFoundation Core CoursesWInformation
Elektrotechnik und Informationstechnologie MasterFoundation Core CoursesWInformation
Elektrotechnik und Informationstechnologie MasterVertiefungsfächerWInformation
Elektrotechnik und Informationstechnologie MasterEmpfohlene FächerWInformation
Elektrotechnik und Informationstechnologie MasterEmpfohlene FächerWInformation
Elektrotechnik und Informationstechnologie MasterEmpfohlene FächerWInformation
Elektrotechnik und Informationstechnologie MasterVertiefungsfächerWInformation
Mathematik MasterInformation and Communication TechnologyWInformation
Quantum Engineering MasterWahlfächerWInformation