Formal methods are increasingly a key part of the methodological toolkit of systems programmers - those writing operating systems, databases, and distributed systems. This course is about how to apply concepts, techniques, and principles from formal methods to such software systems, and how to get into the habit of thinking formally about systems design even when writing low-level C code.
Learning objective
This course is about equipping students whose focus is systems with the insights and conceptual tools provided by formal methods, and thereby enabling them to become better systems programmers. By the end of the course, students should be able to seamlessly integrate basic concepts form formal methods into how they conceive, design, implement, reason about, and debug computer systems.
The goal is not to provide a comprehensive introduction to formal methods - this is well covered by other courses in the department. Instead, it is intended to provide students in computer systems (who may or may not have existing background knowledge of formal methods) with a basis for applying formal methods in their work.
Content
This course does not assume prior knowledge of formal methods, and will start with a quick review of topics such static vs. dynamic reasoning, variants and invariants, program algebra and refinement, etc. However, it is strongly recommended that students have already taken one of the introductory formal methods course at ETH (or equivalents elsewhere) before taking this course - the emphasis is on reinforcing these concepts by applying them, not to teach them from scratch.
Instead, the majority of the course will be about how to apply these techniques to actual, practical code in real systems. We will work from real systems code written both by students taking the course, and practical systems developed using formal techniques, in particular the verified seL4 microkernel will be a key case study. We will also focus on informal, pen-and-paper arguments for correctness of programs and systems rather than using theorem provers or automated verification tools; again these latter techniques are well covered in other courses (and recommended as a complement to this one).
Performance assessment
Performance assessment information (valid until the course unit is held again)