401-4627-DRL  Empirical Process Theory and Applications

SemesterFrühjahrssemester 2022
DozierendeS. van de Geer
Periodizitäteinmalige Veranstaltung
LehrspracheEnglisch
KommentarOnly for ETH D-MATH doctoral students and for doctoral students from the Institute of Mathematics at UZH. The latter need to send an email to Jessica Bolsinger (info@zgsm.ch) with the course number. The email should have the subject „Graduate course registration (ETH)“.


KurzbeschreibungEmpirical process theory provides a rich toolbox for studying the properties of empirical risk minimizers, such as least squares and maximum likelihood estimators, support vector machines, etc.
Lernziel
InhaltIn this series of lectures, we will start with considering exponential inequalities, including concentration inequalities, for the deviation of averages from their mean. We furthermore present some notions from approximation theory, because this enables us to assess the modulus of continuity of empirical processes. We introduce e.g., Vapnik Chervonenkis dimension: a combinatorial concept (from learning theory) of the "size" of a collection of sets or functions. As statistical applications, we study consistency and exponential inequalities for empirical risk minimizers, and asymptotic normality in semi-parametric models. We moreover examine regularization and model selection.