Wahrscheinlichkeitsmodelle und Anwendungen, Einführung in die Estimationstheorie und in die statistischen Tests.
Lernziel
Fähigkeit, die behandelten wahrscheinlichkeitstheoretischen Methoden und Modellen zu verstehen und anzuwenden. Fähigkeit, einfache statistische Tests selbst durchzuführen und die Resultate zu interpretieren
Inhalt
Der Begriff Wahrscheinlichkeitsraum und einige klassische Modelle: Die Axiome von Kolmogorov, einfache Folgerungen, diskrete Modelle, Dichtefunktionen, Produktmodelle, Zusammenhang zwischen den bisher betrachteten Modellen, Verteilungsfunktionen, Transformation von Wahrscheinlichkeitsverteilungen. Bedingte Wahrscheinlichkeiten: Definition und Beispiele, Berechnung von absoluten aus bedingten Wahrscheinlichkeiten, Bayes'sche Regel, Anwendung auf Nachrichtenquellen, bedingte Verteilungen. Der Erwartungswert einer Zufallsvariablen, Varianz, Kovarianz und Korrelation, lineare Prognosen, das Gesetz der grossen Zahlen, der zentrale Grenzwertsatz. Einführung in die Statistik: Schätzung von Parametern, Tests.
Skript
ja
Literatur
Textbuch: P. Brémaud: 'An Introduction to Probabilistic Modeling', Springer, 1988.