263-5000-00L  Computational Semantics for Natural Language Processing

SemesterFrühjahrssemester 2022
DozierendeM. Sachan
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch



Lehrveranstaltungen

NummerTitelUmfangDozierende
263-5000-00 VComputational Semantics for Natural Language Processing2 Std.
Fr14:15-16:00ML F 38 »
M. Sachan
263-5000-00 UComputational Semantics for Natural Language Processing1 Std.
Fr16:15-17:00ML F 38 »
M. Sachan
263-5000-00 AComputational Semantics for Natural Language Processing2 Std.M. Sachan

Katalogdaten

KurzbeschreibungThis course presents an introduction to Natural language processing (NLP) with an emphasis on computational semantics i.e. the process of constructing and reasoning with meaning representations of natural language text.
LernzielThe objective of the course is to learn about various topics in computational semantics and its importance in natural language processing methodology and research. Exercises and the project will be key parts of the course so the students will be able to gain hands-on experience with state-of-the-art techniques in the field.
InhaltWe will take a modern view of the topic, and focus on various statistical and deep learning approaches for computation semantics. We will also overview various primary areas of research in language processing and discuss how the computational semantics view can help us make advances in NLP.
SkriptLecture slides will be made available at the course Web site.
LiteraturNo textbook is required, but there will be regularly assigned readings from research literature, linked to the course website.
Voraussetzungen / BesonderesThe student should have successfully completed a graduate level class in machine learning (252-0220-00L), deep learning (263-3210-00L) or natural language processing (252-3005-00L) before. Similar courses from other universities are acceptable too.

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte6 KP
PrüfendeM. Sachan
Formbenotete Semesterleistung
PrüfungsspracheEnglisch
RepetitionRepetition nur nach erneuter Belegung der Lerneinheit möglich.
Zusatzinformation zum PrüfungsmodusThe final assessment will be a combination of classroom participation, graded exercises and the project. There will be 2 exercise sets which will be a mix of theoretical and implementation problems, and will total to 30% of your grade. Classroom participation (including a research paper presentation) will account for 20% of the grade. The project will account of the rest of the grade (50%). There will be no written exams.

Lernmaterialien

 
HauptlinkInformation
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

StudiengangBereichTyp
CAS in InformatikVertiefungsfächer und WahlfächerWInformation
Cyber Security MasterWahlfächerWInformation
Data Science MasterWählbare KernfächerWInformation
Informatik MasterWahlfächerWInformation
Informatik MasterWahlfächer der Vertiefung General StudiesWInformation
Informatik MasterErgänzung in Machine LearningWInformation