401-3531-00L  Differential Geometry I

SemesterHerbstsemester 2021
DozierendeJ. Serra
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch
KommentarHöchstens eines der drei Bachelor-Kernfächer
401-3461-00L Funktionalanalysis I / Functional Analysis I
401-3531-00L Differentialgeometrie I / Differential Geometry I
401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory
ist im Master-Studiengang Mathematik anrechenbar. Die Kategoriezuordnung können Sie in diesem Fall nicht selber in myStudies vornehmen, sondern Sie müssen sich dazu nach dem Verfügen des Prüfungsresultates an das Studiensekretariat (Link) wenden.


KurzbeschreibungIntroduction to differential geometry and differential topology. Contents: Curves, (hyper-)surfaces in R^n, geodesics, curvature, Theorema Egregium, Theorem of Gauss-Bonnet. Hyperbolic space. Differentiable manifolds, immersions and embeddings, Sard's Theorem, mapping degree and intersection number, vector bundles, vector fields and flows, differential forms, Stokes' Theorem.
LernzielProvide insightful knowledge about the classical theory of curves and surfaces (which is the precursor of modern differential geometry). Invite students to use and sharpen their geometric intuition.
Introduce the language, basic tools, and some fundamental results in modern differential geometry.
SkriptPartial lecture notes are available from Prof. Lang's website Link
Literatur- Manfredo P. do Carmo: Differential Geometry of Curves and Surfaces
- John M. Lee: Introduction to Smooth Manifolds
- S. Montiel, A. Ros: Curves and Surfaces
- S. Kobayashi: Differential Geometry of Curves and Surfaces
- Wolfgang Kühnel: Differentialgeometrie. Kurven-Flächen-Mannigfaltigkeiten
- Dennis Barden & Charles Thomas: An Introduction to Differential Manifolds