263-5255-00L  Foundations of Reinforcement Learning

SemesterHerbstsemester 2021
DozierendeN. He
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch
KommentarNumber of participants limited to 190.

Last cancellation/deregistration date for this graded semester performance: Thursday, 28 October 2021! Please note that after that date no deregistration will be accepted and the course will be considered as "fail".



Lehrveranstaltungen

NummerTitelUmfangDozierende
263-5255-00 VFoundations of Reinforcement Learning2 Std.
Fr14:15-16:00CAB G 11 »
N. He
263-5255-00 AFoundations of Reinforcement Learning2 Std.N. He

Katalogdaten

KurzbeschreibungReinforcement learning (RL) has been in the limelight of many recent breakthroughs in artificial intelligence. This course focuses on theoretical and algorithmic foundations of reinforcement learning, through the lens of optimization, modern approximation, and learning theory. The course targets M.S. students with strong research interests in reinforcement learning, optimization, and control.
LernzielThis course aims to provide students with an advanced introduction of RL theory and algorithms as well as bring them near the frontier of this active research field.

By the end of the course, students will be able to
- Identify the strengths and limitations of various reinforcement learning algorithms;
- Formulate and solve sequential decision-making problems by applying relevant reinforcement learning tools;
- Generalize or discover “new” applications, algorithms, or theories of reinforcement learning towards conducting independent research on the topic.
InhaltBasic topics include fundamentals of Markov decision processes, approximate dynamic programming, linear programming and primal-dual perspectives of RL, model-based and model-free RL, policy gradient and actor-critic algorithms, Markov games and multi-agent RL. If time allows, we will also discuss advanced topics such as batch RL, inverse RL, causal RL, etc. The course keeps strong emphasis on in-depth understanding of the mathematical modeling and theoretical properties of RL algorithms.
SkriptLecture notes will be posted on Moodle.
LiteraturDynamic Programming and Optimal Control, Vol I & II, Dimitris Bertsekas
Reinforcement Learning: An Introduction, Second Edition, Richard Sutton and Andrew Barto.
Algorithms for Reinforcement Learning, Csaba Czepesvári.
Reinforcement Learning: Theory and Algorithms, Alekh Agarwal, Nan Jiang, Sham M. Kakade.
Voraussetzungen / BesonderesStudents are expected to have strong mathematical background in linear algebra, probability theory, optimization, and machine learning.

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte5 KP
PrüfendeN. He
Formbenotete Semesterleistung
PrüfungsspracheEnglisch
RepetitionRepetition nur nach erneuter Belegung der Lerneinheit möglich.
Zusatzinformation zum Prüfungsmodusproject 60%, homework 40%

Lernmaterialien

 
HauptlinkInformation
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

PlätzeMaximal 190
VorrangDie Belegung der Lerneinheit ist bis 04.10.2021 nur durch die primäre Zielgruppe möglich
Primäre ZielgruppeRobotics, Systems and Control MSc (159000)
Elektrotechnik und Informationstechnologie MSc (237000)
Doktorat Informationstechnologie & Elektrotechnik (239002)
Cyber Security MSc (260000)
Cyber Security MSc (EPFL) (260100)
Data Science MSc (261000)
Informatik MSc (263000)
Doktorat Informatik (264002)
CAS ETH in Informatik (269000)
Statistik MSc (436000)
WartelisteBis 11.10.2021

Angeboten in

StudiengangBereichTyp
CAS in InformatikVertiefungsfächer und WahlfächerWInformation
Cyber Security MasterWahlfächerWInformation
Data Science MasterWählbare KernfächerWInformation
Elektrotechnik und Informationstechnologie MasterVertiefungsfächerWInformation
Elektrotechnik und Informationstechnologie MasterEmpfohlene FächerWInformation
Informatik MasterWahlfächerWInformation
Informatik MasterErgänzung in Machine LearningWInformation
Mathematik MasterMachine LearningWInformation