401-3055-64L  Algebraic Methods in Combinatorics

SemesterHerbstsemester 2021
DozierendeB. Sudakov
Periodizität2-jährlich wiederkehrende Veranstaltung
LehrspracheEnglisch



Lehrveranstaltungen

NummerTitelUmfangDozierende
401-3055-64 VAlgebraic Methods in Combinatorics2 Std.
Mi10:15-12:00IFW A 36 »
B. Sudakov
401-3055-64 UAlgebraic Methods in Combinatorics1 Std.
Mo12:15-13:00ML F 34 »
13:15-14:00ML F 34 »
B. Sudakov

Katalogdaten

KurzbeschreibungCombinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. This course provides a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas.
LernzielThe students will get an overview of various algebraic methods for solving combinatorial problems. We expect them to understand the proof techniques and to use them autonomously on related problems.
InhaltCombinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. While in the past many of the basic combinatorial results were obtained mainly by ingenuity and detailed reasoning, the modern theory has grown out of this early stage and often relies on deep, well-developed tools.

One of the main general techniques that played a crucial role in the development of Combinatorics was the application of algebraic methods. The most fruitful such tool is the dimension argument. Roughly speaking, the method can be described as follows. In order to bound the cardinality of of a discrete structure A one maps its elements to vectors in a linear space, and shows that the set A is mapped to linearly independent vectors. It then follows that the cardinality of A is bounded by the dimension of the corresponding linear space. This simple idea is surprisingly powerful and has many famous applications.

This course provides a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas. The topics covered in the class will include (but are not limited to):

Basic dimension arguments, Spaces of polynomials and tensor product methods, Eigenvalues of graphs and their application, the Combinatorial Nullstellensatz and the Chevalley-Warning theorem. Applications such as: Solution of Kakeya problem in finite fields, counterexample to Borsuk's conjecture, chromatic number of the unit distance graph of Euclidean space, explicit constructions of Ramsey graphs and many others.

The course website can be found at
https://moodle-app2.let.ethz.ch/course/view.php?id=15757
SkriptLectures will be on the blackboard only, but there will be a set of typeset lecture notes which follow the class closely.
Voraussetzungen / BesonderesStudents are expected to have a mathematical background and should be able to write rigorous proofs.

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte6 KP
PrüfendeB. Sudakov
FormSessionsprüfung
PrüfungsspracheEnglisch
RepetitionDie Leistungskontrolle wird in jeder Session angeboten. Die Repetition ist ohne erneute Belegung der Lerneinheit möglich.
Prüfungsmodusschriftlich 180 Minuten
Hilfsmittel schriftlichStudents are allowed to bring ONLY a printed copy of the lecture notes with no extra writing (highlighting and blank post-its are allowed).
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan.

Lernmaterialien

 
HauptlinkMoodle of the course
Moodle-KursMoodle-Kurs / Moodle course
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

401-3055-64 UAlgebraic Methods in Combinatorics
GruppenG-01
Mo12:15-13:00ML F 34 »
G-02
Mo13:15-14:00ML F 34 »

Einschränkungen

Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

StudiengangBereichTyp
Cyber Security MasterWahlfächerWInformation
Data Science MasterWählbare KernfächerWInformation
Doktorat Departement Informationstechnologie und ElektrotechnikLehrangebot Doktorat und PostdoktoratWInformation
Doktorat Departement MathematikGraduate School / GraduiertenkollegWInformation
Elektrotechnik und Informationstechnologie MasterVertiefungsfächerWInformation
Elektrotechnik und Informationstechnologie MasterEmpfohlene FächerWInformation
Elektrotechnik und Informationstechnologie MasterEmpfohlene FächerWInformation
Elektrotechnik und Informationstechnologie MasterEmpfohlene FächerWInformation
Elektrotechnik und Informationstechnologie MasterEmpfohlene FächerWInformation
Elektrotechnik und Informationstechnologie MasterVertiefungsfächerWInformation
Elektrotechnik und Informationstechnologie MasterVertiefungsfächerWInformation
Elektrotechnik und Informationstechnologie MasterVertiefungsfächerWInformation
Elektrotechnik und Informationstechnologie MasterEmpfohlene FächerWInformation
Elektrotechnik und Informationstechnologie MasterVertiefungsfächerWInformation
Informatik MasterWahlfächerWInformation
Informatik MasterErgänzung in Theoretical Computer ScienceWInformation
Mathematik BachelorAuswahl: Mathematische Optimierung, Diskrete MathematikWInformation
Mathematik MasterAuswahl: Mathematische Optimierung, Diskrete MathematikWInformation