851-0650-00L  AI4Good

SemesterHerbstsemester 2021
DozierendeJ. D. Wegner
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch



Lehrveranstaltungen

NummerTitelUmfangDozierende
851-0650-00 GAI4Good Für Fachstudierende und Hörer/-innen ist eine Spezialbewilligung der Dozierenden notwendig.2 Std.
Do10:15-12:00IFW C 33 »
J. D. Wegner

Katalogdaten

KurzbeschreibungThe AI4Good course is a hackathon turned into a full course. At the beginning, stakeholders active in the development sector will describe several problems that could be solved with a machine learning approach. Students will spend the semester on designing, implementing, and testing suitable solutions using machine learning. Progress will be discussed with all course members.
LernzielGiven a specific problem in global development, students shall learn to self-responsibly design, implement and experimentally evaluate a suitable solution. Students will also learn to critically evaluate their ideas and solutions together with all course members in a broader context that go beyond mere technical solutions, but touch on ethics, local culture etc., too.
InhaltThe AI4Good course is a hackathon turned into a full course. At the beginning of the course, stakeholders (e.g., NGOs) active in the development sector will describe several problems that could be solved with a machine learning approach. Organizers of the course will make sure that only those problems are selected that are suitable for a machine learning approach and where sufficient amounts of data (and labels) are available. Students will organize themselves into small groups of 3-5 students, where each group works on solving a specific problem. Students will spend the semester on designing, implementing, and testing suitable solutions using machine learning. Every two weeks, each group will present ideas and progress during a short presentation followed by a discussion with all course members. At the end of the course, students will present their final results and submit source code. In addition, they will describe the developed method in form of a scientific paper of 8 pages. Grading will depend on the source code, the paper, and active participation in class.

Note: The course AI4Good is not related to Hack4Good, which is a students' initiative organized by the Analytics Club at ETH. For more information about Hack4Good check out the website: Link.
Voraussetzungen / BesonderesStudents with a strong background in machine learning and excellent programming skills (preferably in Python)

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte3 KP
PrüfendeJ. D. Wegner
Formbenotete Semesterleistung
PrüfungsspracheEnglisch
RepetitionRepetition nur nach erneuter Belegung der Lerneinheit möglich.

Lernmaterialien

Keine öffentlichen Lernmaterialien verfügbar.
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

Allgemein : Für Fachstudierende und Hörer/-innen ist eine Spezialbewilligung der Dozierenden notwendig
PlätzeMaximal 30
WartelisteBis 03.10.2021
BelegungsendeBelegung nur bis 31.10.2021 möglich

Angeboten in

StudiengangBereichTyp
GESS Wissenschaft im Kontext (Science in Perspective)PolitologieWInformation
GESS Wissenschaft im Kontext (Science in Perspective)D-BAUGWInformation
GESS Wissenschaft im Kontext (Science in Perspective)D-ERDWWInformation
GESS Wissenschaft im Kontext (Science in Perspective)D-INFKWInformation
GESS Wissenschaft im Kontext (Science in Perspective)D-ITETWInformation
GESS Wissenschaft im Kontext (Science in Perspective)D-MATHWInformation
GESS Wissenschaft im Kontext (Science in Perspective)D-MATLWInformation
GESS Wissenschaft im Kontext (Science in Perspective)D-MTECWInformation
GESS Wissenschaft im Kontext (Science in Perspective)D-MAVTWInformation
GESS Wissenschaft im Kontext (Science in Perspective)D-PHYSWInformation
GESS Wissenschaft im Kontext (Science in Perspective)D-USYSWInformation