401-4785-00L  Mathematical and Computational Methods in Photonics

SemesterHerbstsemester 2021
DozierendeH. Ammari
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch



Lehrveranstaltungen

NummerTitelUmfangDozierende
401-4785-00 GMathematical and Computational Methods in Photonics4 Std.
Mo10:15-12:00HG G 26.5 »
Mi10:15-12:00HG G 26.5 »
H. Ammari

Katalogdaten

KurzbeschreibungThe aim of this course is to review new and fundamental mathematical tools, computational approaches, and inversion and optimal design methods used to address challenging problems in nanophotonics. The emphasis will be on analyzing plasmon resonant nanoparticles, super-focusing & super-resolution of electromagnetic waves, photonic crystals, electromagnetic cloaking, metamaterials, and metasurfaces
LernzielThe field of photonics encompasses the fundamental science of light propagation and interactions in complex structures, and its technological applications.

The recent advances in nanoscience present great challenges for the applied and computational mathematics community. In nanophotonics, the aim is to control, manipulate, reshape, guide, and focus electromagnetic waves at nanometer length scales, beyond the resolution limit. In particular, one wants to break the resolution limit by reducing the focal spot and confine light to length scales that are significantly smaller than half the wavelength.

Interactions between the field of photonics and mathematics has led to the emergence of a multitude of new and unique solutions in which today's conventional technologies are approaching their limits in terms of speed, capacity and accuracy. Light can be used for detection and measurement in a fast, sensitive and accurate manner, and thus photonics possesses a unique potential to revolutionize healthcare. Light-based technologies can be used effectively for the very early detection of diseases, with non-invasive imaging techniques or point-of-care applications. They are also instrumental in the analysis of processes at the molecular level, giving a greater understanding of the origin of diseases, and hence allowing prevention along with new treatments. Photonic technologies also play a major role in addressing the needs of our ageing society: from pace-makers to synthetic bones, and from endoscopes to the micro-cameras used in in-vivo processes. Furthermore, photonics are also used in advanced lighting technology, and in improving energy efficiency and quality. By using photonic media to control waves across a wide band of wavelengths, we have an unprecedented ability to fabricate new materials with specific microstructures.

The main objective in this course is to report on the use of sophisticated mathematics in diffractive optics, plasmonics, super-resolution, photonic crystals, and metamaterials for electromagnetic invisibility and cloaking. The book merges highly nontrivial multi-mathematics in order to make a breakthrough in the field of mathematical modelling, imaging, and optimal design of optical nanodevices and nanostructures capable of light enhancement, and of the focusing and guiding of light at a subwavelength scale. We demonstrate the power of layer potential techniques in solving challenging problems in photonics, when they are combined with asymptotic analysis and the elegant theory of Gohberg and Sigal on meromorphic operator-valued functions.

In this course we shall consider both analytical and computational matters in photonics. The issues we consider lead to the investigation of fundamental problems in various branches of mathematics. These include asymptotic analysis, spectral analysis, mathematical imaging, optimal design, stochastic modelling, and analysis of wave propagation phenomena. On the other hand, deriving mathematical foundations, and new and efficient computational frameworks and tools in photonics, requires a deep understanding of the different scales in the wave propagation problem, an accurate mathematical modelling of the nanodevices, and fine analysis of complex wave propagation phenomena. An emphasis is put on mathematically analyzing plasmon resonant nanoparticles, diffractive optics, photonic crystals, super-resolution, and metamaterials.

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte8 KP
PrüfendeH. Ammari
FormSessionsprüfung
PrüfungsspracheEnglisch
RepetitionDie Leistungskontrolle wird in jeder Session angeboten. Die Repetition ist ohne erneute Belegung der Lerneinheit möglich.
Prüfungsmodusmündlich 20 Minuten
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan.

Lernmaterialien

 
DokumenteIntroductory Lecture
Lecture Slides
LiteraturLayer Potential Techniques in Spectral Analysis. H. Ammari, H. Kang and H. Lee.
Mathematical and Computational Methods in Photonics and Phononics - Lecture Notes
Weitere LinksMathematical and Computational Methods in Photonics - Tutorial Notes.pdf
Tutorial 01 - Mullers Method and Spectrum of Neumann Poincare Operator
Tutorial 02 - Eigenvalues of the Laplacian
Tutorial 03 - Periodic and Quasiperiodic Green's Functions and Layer Potentials
Tutorial 04 - Polarization Tensors and Scattering Coefficients
Tutorial 05 - Direct Imaging and Super-resolution in High Contrast Media
Tutorial 06 - Scattering Coefficients for Maxwell's Equations
Tutorial 07 - Diffraction Gratings
Tutorial 08 - Photonic Crystal Band Structure
Tutorial 09 - Plasmonic Resonance
Tutorial 10 - Plasmonic Metasurfaces
Tutorial 11 - Near-Cloacking
Tutorial 12 - Anomalous Resonance Cloaking and Shielding
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

StudiengangBereichTyp
Doktorat Departement MathematikGraduate School / GraduiertenkollegWInformation
Mathematik MasterAuswahl: Numerische MathematikWInformation
Rechnergestützte Wissenschaften MasterElectromagneticsWInformation