401-3378-19L  Entropy in Dynamics

SemesterSpring Semester 2021
LecturersM. Einsiedler
Periodicitynon-recurring course
Language of instructionEnglish


AbstractDefinition and basic property of measure theoretic dynamical entropy (elementary and conditionally). Ergodic theorem for entropy. Topological entropy and variational principle. Measures of maximal entropy. Equidistribution of periodic points. Measure rigidity for commuting maps on the circle group.
ObjectiveThe course will lead to a firm understanding of measure theoretic dynamical entropy and its applications within dynamics. We will start with the basic properties of (conditional) entropy, relate it to the question of effective coding techniques, discuss and prove the Shannon-McMillan-Breiman theorem that is also known as the ergodic theorem for entropy. Moreover, we will discuss a topological counter part and relate this topological entropy to the measure theoretic entropy by the variational principle. We will use these methods to classify certain natural homogeneous measures, prove equidistribution of periodic points on compact quotients of hyperbolic surfaces, and establish a measure rigidity theorem for commuting maps on the circle group.
Lecture notesEntropy book under construction, available online under
https://tbward0.wixsite.com/books/entropy
Prerequisites / NoticeNo prior knowledge of dynamical systems will be assumed but measure theory will be assumed and very important. Doctoral students are welcome to attend the course for 2KP.