227-0085-09L Projekte & Seminare: Spiking Neural Network on Neuromorphic Processors
Semester | Frühjahrssemester 2021 |
Dozierende | G. Indiveri |
Periodizität | jedes Semester wiederkehrende Veranstaltung |
Lehrveranstaltung | Findet dieses Semester nicht statt. |
Lehrsprache | Englisch |
Kommentar | Nur für Elektrotechnik und Informationstechnologie BSc. Die Lerneinheit kann nur einmal belegt werden. Eine wiederholte Belegung in einem späteren Semester ist nicht anrechenbar. |
Kurzbeschreibung | Der Bereich Praktika, Projekte, Seminare umfasst Lehrveranstaltungen in unterschiedlichen Formaten zum Erwerb von praktischen Kenntnissen und Fertigkeiten. Ausserdem soll selbstständiges Experimentieren und Gestalten gefördert, exploratives Lernen ermöglicht und die Methodik von Projektarbeiten vermittelt werden. |
Lernziel | Machine Learning – Spiking Neural Network – DVS Cameras - Programming Neuromoripch processors – Intel Loihi - Final Project with a presentation. Compared to the “traditional” artificial neural network, the spiking neural network (SNN) can provided both latency and energy efficiency. Moreover, SNN has demonstrated in previous works a better performance in processing physiological information of small sample size, and only the output layer of the spiking neural network needs to be trained, which results in a fast training rate. This couse focuses on giving the bases of spiking neural networks and neuromorphic processors. Students will learn the tools to implement SNN algorithm in both academic processors and Intel Loihi using data from Event-based Vision camera and biomedical sensors (i.e. ECG and EEG). The course will end with 4 weeks project where the students can target a specif application scenario. The course will be taught in English. |