651-4013-00L  Potential Field Theory

SemesterSpring Semester 2021
LecturersA. Khan
Periodicityyearly recurring course
Language of instructionEnglish


AbstractThe course will guide students in learning about the capabilities and limitations of potential field data, namely gravity and magnetic measurements as collected by industry, in determining geological sources.
It will follow a mathematical approach, and students will learn to apply mathematical strategies to generate quantitative answers to geophysical questions.
ObjectiveThe course will guide students in learning about the capabilities and limitations of potential field data, namely gravity and magnetic measurements as collected by industry, in determining geological sources.
It will follow a mathematical approach, and students will learn to apply mathematical strategies to generate quantitative answers to geophysical questions.
ContentPart I:
Concept of work & energy, conservative fields, the Newtonian potential, Laplace's and Poisson's equation, solutions in Cartesian/spherical geometry, the Geoid, gravity instrumentation, field data processing, depth rules for isolated bodies, Fourier methods.
Part II:
Magnetic potential, dipole and current loops, distributed magnetization, remanent and induced magnetization, nonuniqueness & ``annihilators'', field data processing, magnetic instrumentation, anomalies from total field data, reduction to the pole, statistical methods.
Part III:
Applicability to DC electrical methods: resistivity sounding.
Prerequisites / NoticePrerequisite: Successful completion of 651-4130-00 Mathematical Methods