Erste Semesterhälfte: Einführung in die wichtigsten Methoden der numerischen Optimierung mit Schwerpunkt auf stochastischen Verfahren wie genetische Algorithmen, evolutionäre Strategien, etc. Zweite Semesterhälfte: Jeder Teilnehmer implementiert ein ausgewähltes Optimierungsverfahren und wendet es auf ein praktisches Problem an.
Lernziel
Numerische Optimierung spielt eine zunehmende Rolle sowohl bei der Entwicklung technischer Produkte als auch bei der Entwicklung numerischer Methoden. Die Studenten sollen lernen, geeignete Verfahren auszuwählen, weiter zu entwickeln und miteinander zu kombinieren um so praktische Probleme effizient zu lösen.
Inhalt
Typische Optimierungsprobleme und deren Tücken werden skizziert. Bekannte deterministische Suchalgorithmen, Verfahren der kombinatorische Minimierung und evolutionäre Algorithmen werden vorgestellt und miteinander verglichen. Da Optimierungsprobleme im Ingenieurbereich oft sehr komplex sind, werden Wege zur Entwicklung neuer, effizienter Verfahren aufgezeigt. Solche Verfahren basieren oft auf einer Verallgemeinerung oder einer Kombination von bekannten Verfahren. Zur Veranschaulichung werden aus dem breiten Anwendungsbereich numerischer Optimierungsverfahren verschiedenartigste praktische Probleme herausgegriffen
Skript
PDF of a short skript (39 pages) plus the view graphs are provided
Voraussetzungen / Besonderes
Vorlesung nur in der 1. Semesterhälfte, Übungen in Form kleiner Projekte in der 2. Semesterhälfte, Präsentation der Resultate in der letzten Semesterwoche.