401-3932-19L  Machine Learning in Finance

SemesterFrühjahrssemester 2021
DozierendeJ. Teichmann
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch


KurzbeschreibungThe course will deal with the following topics with rigorous proofs and many coding excursions: Universal approximation theorems, Stochastic gradient Descent, Deep
networks and wavelet analysis, Deep Hedging, Deep calibration,
Different network architectures, Reservoir Computing, Time series analysis by machine learning, Reinforcement learning, generative adversersial networks, Economic games.
Lernziel
Voraussetzungen / BesonderesBachelor in mathematics, physics, economics or computer science.