Nur für Elektrotechnik und Informationstechnologie BSc.
Die Lerneinheit kann nur einmal belegt werden. Eine wiederholte Belegung in einem späteren Semester ist nicht anrechenbar.
Lehrveranstaltungen
Nummer
Titel
Umfang
Dozierende
227-0085-16 P
Projekte & Seminare: Machine Learning for Brain-Computer Interfaces
Findet dieses Semester nicht statt. Für den Zugang zum Angebot und zur Einschreibung loggen Sie sich hier ein (mit Ihrem n.ETHZ account): https://psapp.ee.ethz.ch/ Bitte beachten Sie, dass die Seite jeweils erst zwei Wochen vor Semesterbeginn zugänglich ist und im Verlauf des Semesters wieder abgeschaltet wird. Die Einschreibung ist nur von Freitag vor Semesterbeginn bis zum ersten Freitagmittag im Semester möglich.
To access the offer and to enroll for courses log in (with your n.ethz account): https://psapp.ee.ethz.ch/ Please note that the P&S-site is accessible no earlier than two weeks before the start of the semester until four weeks after the start of the semester. Enrollment is only possible from Friday before the start of the semester until noon of the first Friday in the semester.
Der Bereich Praktika, Projekte, Seminare umfasst Lehrveranstaltungen in unterschiedlichen Formaten zum Erwerb von praktischen Kenntnissen und Fertigkeiten. Ausserdem soll selbstständiges Experimentieren und Gestalten gefördert, exploratives Lernen ermöglicht und die Methodik von Projektarbeiten vermittelt werden.
Lernziel
A brain-computer interface (BCI) provides a communication and control channel based on the recognition of subject’s intention from spatiotemporal activity of the brain. A typical method to acquire neural activity signals is electroencephalograhy (EEG), which is often used in BCI. In order to make these data usable and get useful information out of them, signal processing techniques play a crucial role. Moreover, feature extraction and machine learning methods are applied to obtain a highly accurate BCI. The aim of the Project and Seminars course is to give insights of signal processing and machine learning applied to brain-computer interfaces to undergraduate students, by having hands-on experience in brain signal acquisition, data processing, feature extraction, and machine learning.
Leistungskontrolle
Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)