263-3710-00L  Machine Perception

SemesterFrühjahrssemester 2021
DozierendeO. Hilliges, S. Tang
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch
KommentarNumber of participants limited to 200.



Lehrveranstaltungen

NummerTitelUmfangDozierende
263-3710-00 VMachine Perception3 Std.
Mi13:15-14:00HG F 1 »
Do12:15-14:00HG E 5 »
O. Hilliges, S. Tang
263-3710-00 UMachine Perception2 Std.
Do14:15-16:00CAB G 11 »
Fr14:15-16:00CAB G 11 »
O. Hilliges, S. Tang
263-3710-00 AMachine Perception2 Std.O. Hilliges, S. Tang

Katalogdaten

KurzbeschreibungRecent developments in neural networks (aka “deep learning”) have drastically advanced the performance of machine perception systems in a variety of areas including computer vision, robotics, and intelligent UIs. This course is a deep dive into deep learning algorithms and architectures with applications to a variety of perceptual tasks.
LernzielStudents will learn about fundamental aspects of modern deep learning approaches for perception. Students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in learning-based computer vision, robotics and HCI. The final project assignment will involve training a complex neural network architecture and applying it on a real-world dataset of human activity.

The core competency acquired through this course is a solid foundation in deep-learning algorithms to process and interpret human input into computing systems. In particular, students should be able to develop systems that deal with the problem of recognizing people in images, detecting and describing body parts, inferring their spatial configuration, performing action/gesture recognition from still images or image sequences, also considering multi-modal data, among others.
InhaltWe will focus on teaching: how to set up the problem of machine perception, the learning algorithms, network architectures and advanced deep learning concepts in particular probabilistic deep learning models

The course covers the following main areas:
I) Foundations of deep-learning.
II) Probabilistic deep-learning for generative modelling of data (latent variable models, generative adversarial networks and auto-regressive models).
III) Deep learning in computer vision, human-computer interaction and robotics.

Specific topics include: 
I) Deep learning basics:
a) Neural Networks and training (i.e., backpropagation)
b) Feedforward Networks
c) Timeseries modelling (RNN, GRU, LSTM)
d) Convolutional Neural Networks for classification
II) Probabilistic Deep Learning:
a) Latent variable models (VAEs)
b) Generative adversarial networks (GANs)
c) Autoregressive models (PixelCNN, PixelRNN, TCNs)
III) Deep Learning techniques for machine perception:
a) Fully Convolutional architectures for dense per-pixel tasks (i.e., instance segmentation)
b) Pose estimation and other tasks involving human activity
c) Deep reinforcement learning
IV) Case studies from research in computer vision, HCI, robotics and signal processing
LiteraturDeep Learning
Book by Ian Goodfellow and Yoshua Bengio
Voraussetzungen / Besonderes***
In accordance with the ETH Covid-19 master plan the lecture will be fully virtual. Details on the course website.
***

This is an advanced grad-level course that requires a background in machine learning. Students are expected to have a solid mathematical foundation, in particular in linear algebra, multivariate calculus, and probability. The course will focus on state-of-the-art research in deep-learning and will not repeat basics of machine learning

Please take note of the following conditions:
1) The number of participants is limited to 200 students (MSc and PhDs).
2) Students must have taken the exam in Machine Learning (252-0535-00) or have acquired equivalent knowledge
3) All practical exercises will require basic knowledge of Python and will use libraries such as Pytorch, scikit-learn and scikit-image. We will provide introductions to Pytorch and other libraries that are needed but will not provide introductions to basic programming or Python.

The following courses are strongly recommended as prerequisite:
* "Visual Computing" or "Computer Vision"

The course will be assessed by a final written examination in English. No course materials or electronic devices can be used during the examination. Note that the examination will be based on the contents of the lectures, the associated reading materials and the exercises.

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte8 KP
PrüfendeO. Hilliges, S. Tang
FormSessionsprüfung
PrüfungsspracheEnglisch
RepetitionDie Leistungskontrolle wird in jeder Session angeboten. Die Repetition ist ohne erneute Belegung der Lerneinheit möglich.
Prüfungsmodusschriftlich 120 Minuten
Zusatzinformation zum PrüfungsmodusThe grade of the course is determined by mandatory project work (40%) and the final written exam (60%).
Hilfsmittel schriftlichlimited aids (2 x A4 pages of hand written notes)
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan.

Lernmaterialien

 
HauptlinkInformation
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

PlätzeMaximal 200
VorrangDie Belegung der Lerneinheit ist bis 07.03.2021 nur durch die primäre Zielgruppe möglich
Primäre ZielgruppeCyber Security MSc (260000)
Cyber Security MSc (EPFL) (260100)
Data Science MSc (261000)
Informatik MSc (263000)
CAS ETH in Informatik (269000)
Informatik (Mobilität) (274000)
WartelisteBis 19.03.2021

Angeboten in

StudiengangBereichTyp
CAS in InformatikFokusfächer und WahlfächerWInformation
Cyber Security MasterWahlfächerWInformation
Cyber Security MasterWahlfächerWInformation
DAS in Data ScienceImage Analysis & Computer VisionWInformation
DAS in Data ScienceMachine Learning and Artificial IntelligenceWInformation
Data Science MasterWählbare KernfächerWInformation
Informatik MasterKernfächerWInformation
Informatik MasterKernfächerWInformation
Informatik MasterErgänzung in Computer VisionWInformation
Informatik MasterWahlfächer der Vertiefung in Visual ComputingWInformation
Informatik MasterWahlfächer der Vertiefung General StudiesWInformation
Informatik MasterWahlfächer der Vertiefung in Distributed SystemsWInformation
Informatik MasterErgänzung in Machine LearningWInformation