402-0343-00L  Physics Against Cancer: The Physics of Imaging and Treating Cancer

SemesterFrühjahrssemester 2021
DozierendeA. J. Lomax, U. Schneider
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch
KommentarFachstudierende UZH müssen das Modul PHY361 direkt an der UZH buchen.



Lehrveranstaltungen

NummerTitelUmfangDozierende
402-0343-00 VPhysics Against Cancer: The Physics of Imaging and Treating Cancer
**together with University of Zurich**
More information at: Link
2 Std.
Fr09:45-11:30HIT H 51 »
A. J. Lomax, U. Schneider
402-0343-00 UPhysics Against Cancer: The Physics of Imaging and Treating Cancer
**together with University of Zurich**
More information at:https://studentservices.uzh.ch/uzh/anonym/vvz/index.html#/details/2020/004/SM/50692057
1 Std.
Fr11:45-12:30HIT H 51 »
A. J. Lomax, U. Schneider

Katalogdaten

KurzbeschreibungRadiotherapy is a rapidly developing and technology driven medical discipline that is heavily dependent on physics and engineering. In this lecture series, we will review and describe some of the current developments in radiotherapy, particularly from the physics and technological view point, and will indicate in which direction future research in radiotherapy will lie.
LernzielRadiotherapy is a rapidly developing and technology driven medical discipline that is heavily dependent on physics and engineering. In the last few years, a multitude of new techniques, equipment and technology have been introduced, all with the primary aim of more accurately targeting and treating cancerous tissues, leading to a precise, predictable and effective therapy technique. In this lecture series, we will review and describe some of the current developments in radiotherapy, particularly from the physics and technological view point, and will indicate in which direction future research in radiotherapy will lie. Our ultimate aim is to provide the student with a taste for the critical role that physics plays in this rapidly evolving discipline and to show that there is much interesting physics still to be done.
InhaltThe lecture series will begin with a short introduction to radiotherapy and an overview of the lecture series (lecture 1). Lecture 2 will cover the medical imaging as applied to radiotherapy, without which it would be impossible to identify or accurately calculate the deposition of radiation in the patient. This will be followed by a detailed description of the treatment planning process, whereby the distribution of deposited energy within the tumour and patient can be accurately calculated, and the optimal treatment defined (lecture 3). Lecture 4 will follow on with this theme, but concentrating on the more theoretical and mathematical techniques that can be used to evaluate different treatments, using mathematically based biological models for predicting the outcome of treatments. The role of physics modeling, in order to accurately calculate the dose deposited from radiation in the patient, will be examined in lecture 5, together with a review of mathematical tools that can be used to optimize patient treatments. Lecture 6 will investigate a rather different issue, that is the standardization of data sets for radiotherapy and the importance of medical data bases in modern therapy. In lecture 7 we will look in some detail at one of the most advanced radiotherapy delivery techniques, namely Intensity Modulated Radiotherapy (IMRT). In lecture 8, the two topics of imaging and therapy will be somewhat combined, when we will describe the role of imaging in the daily set-up and assessment of patients. Lecture 9 follows up on this theme, in which a major problem of radiotherapy, namely organ motion and changes in patient and tumour geometry during therapy, will be addressed, together with methods for dealing with such problems. Finally, in lectures 10-11, we will describe in some of the multitude of different delivery techniques that are now available, including particle based therapy, rotational (tomo) therapy approaches and robot assisted radiotherapy. In the final lecture, we will provide an overview of the likely avenues of research in the next 5-10 years in radiotherapy. The course will be rounded-off with an opportunity to visit a modern radiotherapy unit, in order to see some of the techniques and delivery methods described in the course in action.
Voraussetzungen / BesonderesAlthough this course is seen as being complimentary to the Medical Physics I and II course of Dr Manser, no previous knowledge of radiotherapy is necessarily expected or required for interested students who have not attended the other two courses.

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte6 KP
PrüfendeA. J. Lomax, U. Schneider
FormSessionsprüfung
PrüfungsspracheEnglisch
RepetitionDie Leistungskontrolle wird in jeder Session angeboten. Die Repetition ist ohne erneute Belegung der Lerneinheit möglich.
Prüfungsmodusmündlich 30 Minuten
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan.

Lernmaterialien

Keine öffentlichen Lernmaterialien verfügbar.
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

StudiengangBereichTyp
Biomedical Engineering MasterWahlfächer der VertiefungWInformation
Biomedical Engineering MasterWahlfächer der VertiefungWInformation
MAS in Medical PhysicsWahlfächerWInformation
Nuclear Engineering Master2. SemesterWInformation
Physik BachelorAuswahl an Lehrveranstaltungen aus höheren SemesternWInformation
Physik MasterAuswahl: MedizinphysikWInformation