551-1412-00L  Molecular and Structural Biology IV: Visualizing Macromolecules by X-Ray Crystallography and EM

SemesterSpring Semester 2021
LecturersN. Ban, D. Böhringer, T. Ishikawa, M. A. Leibundgut, K. Locher, M. Pilhofer, K. Wüthrich, further lecturers
Periodicityyearly recurring course
Language of instructionEnglish



Courses

NumberTitleHoursLecturers
551-1412-00 VMolecular and Structural Biology IV: Visualizing Macromolecules by X-Ray Crystallography and EM2 hrs
Fri15:45-17:30HPK D 3 »
N. Ban, D. Böhringer, T. Ishikawa, M. A. Leibundgut, K. Locher, M. Pilhofer, K. Wüthrich, further lecturers

Catalogue data

AbstractThis course provides an in-depth discussion of two main methods to determine the 3D structures of macromolecules and complexes at high resolution: X-ray crystallography and cryo-electron microscopy. Both techniques result in electron density maps that are interpreted by atomic models.
ObjectiveStudents will obtain the theoretical background to understand structure determination techniques employed in X-ray crystallography and electron microscopy, including diffraction theory, crystal growth and analysis, reciprocal space calculations, interpretation of electron density, structure building and refinement as well as validation. The course will also provide an introduction into the use of cryo-electron tomography to visualize complex cellular substructures at sub-nanometer resolutions, effectively bridging the resolution gap between optical microscopy and single particle cryo-electron microscopy. Lectures will be complemented with practical sessions where students will have a chance to gain hands on experience with sample preparation, data processing and structure building and refinement.
Content- History of Structural Molecular Biology

- X-ray diffraction from macromolecular crystals

- Data collection and statistics, phasing methods

- Crystal symmetry and space groups

- X-ray data processing

- Principle of cryo-EM for biological macromolecules I, including hardware of TEM and detectors, image formation principle (phase contrast, spherical aberration, CTF), 3D reconstruction (central-section theorem, backprojection, missing information)

- Single particle analysis, including principle (projection matching, random conical tilt, angular reconstitution)

- Tomography I, including basics and subtomogram averaging

- Tomography - recent techniques, including cryo-FIB
- EM specimen preparation (cryo, negative stain), initial EM data processing

- EM and X-ray structure building, refinement, validation and interpretation

- Model building and refinement

Performance assessment

Performance assessment information (valid until the course unit is held again)
Performance assessment as a semester course
ECTS credits4 credits
ExaminersN. Ban, D. Böhringer, T. Ishikawa, M. A. Leibundgut, K. Locher, M. Pilhofer, K. Wüthrich
Typesession examination
Language of examinationEnglish
RepetitionThe performance assessment is offered every session. Repetition possible without re-enrolling for the course unit.
Mode of examinationwritten 60 minutes
Written aidsNone
This information can be updated until the beginning of the semester; information on the examination timetable is binding.

Learning materials

No public learning materials available.
Only public learning materials are listed.

Groups

No information on groups available.

Restrictions

There are no additional restrictions for the registration.

Offered in

ProgrammeSectionType
Biology MasterElective Compulsory Master CoursesWInformation
Biology MasterElective Compulsory Master CoursesWInformation
Biology MasterElective Compulsory Master CoursesWInformation
Biology MasterElective Compulsory Master CoursesWInformation