402-0468-15L  Nanomaterials for Photonics

SemesterSpring Semester 2021
LecturersR. Grange, R. Savo
Periodicityyearly recurring course
Language of instructionEnglish



Courses

NumberTitleHoursLecturers
402-0468-15 VNanomaterials for Photonics2 hrs
Tue08:45-10:30HIT F 11.1 »
R. Grange, R. Savo
402-0468-15 UNanomaterials for Photonics1 hrs
Tue10:45-11:30HIT F 11.1 »
R. Grange, R. Savo

Catalogue data

AbstractThe lecture describes various nanomaterials (semiconductor, metal, dielectric, carbon-based...) for photonic applications (optoelectronics, plasmonics, ordered and disordered structures...). It starts with concepts of light-matter interactions, then the fabrication methods, the optical characterization techniques, the description of the properties and the state-of-the-art applications.
ObjectiveThe students will acquire theoretical and experimental knowledge about the different types of nanomaterials (semiconductors, metals, dielectric, carbon-based, ...) and their uses as building blocks for advanced applications in photonics (optoelectronics, plasmonics, photonic crystal, ...). Together with the exercises, the students will learn (1) to read, summarize and discuss scientific articles related to the lecture, (2) to estimate order of magnitudes with calculations using the theory seen during the lecture, (3) to prepare a short oral presentation and report about one topic related to the lecture, and (4) to imagine an original photonic device.
Content1. Introduction to nanomaterials for photonics
a. Classification of nanomaterials
b. Light-matter interaction at the nanoscale
c. Examples of nanophotonic devices

2. Wave physics for nanophotonics
a. Wavelength, wave equation, wave propagation
b. Dispersion relation
c. Interference
d. Scattering and absorption
e. Coherent and incoherent light

3. Analogies between photons and electrons
a. Quantum wave description
b. How to confine photons and electrons
c. Tunneling effects

4. Characterization of Nanomaterials
a. Optical microscopy: Bright and dark field, fluorescence, confocal, High resolution: PALM (STORM), STED
b. Light scattering techniques: DLS
c. Near field microscopy: SNOM
d. Electron microscopy: SEM, TEM
e. Scanning probe microscopy: STM, AFM
f. X-ray diffraction: XRD, EDS

5. Fabrication of nanomaterials
a. Top-down approach
b. Bottom-up approach

6. Plasmonics
a. What is a plasmon, Drude model
b. Surface plasmon and localized surface plasmon (sphere, rod, shell)
c. Theoretical models to calculate the radiated field: electrostatic approximation and Mie scattering
d. Fabrication of plasmonic structures: Chemical synthesis, Nanofabrication
e. Applications

7. Organic and inorganic nanomaterials
a. Organic quantum-confined structure: nanomers and quantum dots.
b. Carbon nanotubes: properties, bandgap description, fabrication
c. Graphene: motivation, fabrication, devices
d. Nanomarkers for biophotonics

8. Semiconductors
a. Crystalline structure, wave function
b. Quantum well: energy levels equation, confinement
c. Quantum wires, quantum dots
d. Optical properties related to quantum confinement
e. Example of effects: absorption, photoluminescence
f. Solid-state-lasers: edge emitting, surface emitting, quantum cascade

9. Photonic crystals
a. Analogy photonic and electronic crystal, in nature
b. 1D, 2D, 3D photonic crystal
c. Theoretical modelling: frequency and time domain technique
d. Features: band gap, local enhancement, superprism...

10. Nanocomposites
a. Effective medium regime
b. Metamaterials
c. Multiple scattering regime
d. Complex media: structural colour, random lasers, nonlinear disorder
Lecture notesSlides and book chapter will be available for downloading
LiteratureReferences will be given during the lecture
Prerequisites / NoticeBasics of solid-state physics (i.e. energy bands) can help

Performance assessment

Performance assessment information (valid until the course unit is held again)
Performance assessment as a semester course
ECTS credits6 credits
ExaminersR. Grange, R. Savo
Typesession examination
Language of examinationEnglish
RepetitionThe performance assessment is offered every session. Repetition possible without re-enrolling for the course unit.
Mode of examinationoral 20 minutes
Additional information on mode of examinationOptional presentation, report and poster can count for improving the final grade up to 0.25 grade points
This information can be updated until the beginning of the semester; information on the examination timetable is binding.

Learning materials

 
Moodle courseMoodle-Kurs / Moodle course
Only public learning materials are listed.

Groups

No information on groups available.

Restrictions

There are no additional restrictions for the registration.

Offered in

ProgrammeSectionType
Chemistry MasterMaterial ScienceWInformation
Interdisciplinary Sciences MasterGeneral CoursesWInformation
Materials Science MasterElective CoursesWInformation
Micro- and Nanosystems MasterEnergy Conversion and Quantum PhenomenaWInformation
Physics MasterSelection: Quantum ElectronicsWInformation
Quantum Engineering MasterElectivesWInformation