327-2126-00L  Microscopy Training TEM I - Introduction to TEM

SemesterAutumn Semester 2020
LecturersP. Zeng, E. J. Barthazy Meier, A. G. Bittermann, F. Gramm, A. Sologubenko, M. Willinger
Periodicityevery semester recurring course
Language of instructionEnglish
CommentThe number of participants is limited. In case of overbooking, the course will be repeated once. All registrations will be recorded on the waiting list.

For PhD students, postdocs and others, a fee will be charged (Link).

All applicants must additionally register on this form: Link
The selected applicants will be contacted and asked for confirmation a few weeks before the course date.

AbstractThe introductory course on Transmission Electron Microscopy (TEM) provides theoretical and hands-on learning for beginners who are interested in using TEM for their Master or PhD thesis. TEM sample preparation techniques are also discussed. During hands-on sessions at different TEM instruments, students will have the opportunity to examine their own samples if time allows.
ObjectiveUnderstanding of
1. the set-up and individual components of a TEM
2. the basics of electron optics and image formation
3. the basics of electron beam – sample interactions
4. the contrast mechanism
5. various sample preparation techniques
Learning how to
1. align and operate a TEM
2. acquire data using different operation modes of a TEM instrument, i.e. Bright-field and Dark-field imaging
3. record electron diffraction patterns and index diffraction patterns
4. interpret TEM data
- basics of electron optics and the TEM instrument set-up
- TEM imaging modes and image contrast
- STEM operation mode
- Sample preparation techniques for hard and soft materials

- Demo, practical demonstration of a TEM: instrument components, alignment, etc.
- Hands-on training for students: sample loading, instrument alignment and data acquisition.
- Sample preparation for different types of materials
- Practical work with TEMs
- Demonstration of advanced Transmission Electron Microscopy techniques
Lecture notesLecture notes will be distributed.
Literature- Williams, Carter: Transmission Electron Microscopy, Plenum Press, 1996
- Hawkes, Valdre: Biophysical Electron Microscopy, Academic Press, 1990
- Egerton: Physical Principles of Electron Microscopy: an introduction to TEM, SEM and AEM, Springer Verlag, 2007
Prerequisites / NoticeNo mandatory prerequisites. Please consider the prior attendance to EM Basic lectures (551-1618-00V; 227-0390-00L; 327-0703-00L) as suggested prerequisite.