Diese Vorlesung bietet eine Einführung in Computersimulationsmethoden für physikalische Probleme und deren Implementierung auf PCs und Supercomputern. Die betrachteten Themen beinhalten: klassische Bewegungsgleichungen, partielle Differentialgleichungen (Wellengleichung, Diffussionsgleichung, Maxwell-Gleichungen), Monte-Carlo Simulationen, Perkolation, Phasenübergänge und komplexe Netzwerke.
Lernziel
Studenten lernen die folgenden Methoden anzuwenden: Prinzipien zur Erstellung von Zufallszahlen, Berechnung von kritischen Exponenten am Beispiel von Perkolation, Numerische Lösung von Problemen aus der klassichen Mechanik und Elektrodynamik, Kanonische Monte-Carlo Simulationen zur numerischen Betrachtung von magnetischen Systemen. Studenten lernen auch die Verwendung verschiedener Programmiersprachen und Bibliotheken zur Lösung physikalischer Probleme kennen. Zusätzlich lernen Studenten verschiedene numerische Verfahren zu unterscheiden und gezielt zur Lösung eines gegebenen physikalischen Problems einzusetzen.
Inhalt
Einführung in die rechnergestützte Simulation physikalischer Probleme. Anhand einfacher Modelle aus der klassischen Mechanik, Elektrodynamik und statistischen Mechanik sowie interdisziplinären Anwendungen werden die wichtigsten objektorientierten Programmiermethoden für numerische Simulationen (überwiegend in C++) erläutert. Daneben wird ein Überblick über vorhandene Softwarebibliotheken für numerische Simulationen geboten.
Skript
Skript und Folien sind online verfügbar und werden bei Bedarf verteilt.
Literatur
Literaturempfehlungen und Referenzen sind im Skript enthalten.
Voraussetzungen / Besonderes
Vorlesung und Übung in Englisch, Prüfung wahlweise auf Deutsch oder Englisch