# 401-3001-61L Algebraic Topology I

Semester | Autumn Semester 2020 |

Lecturers | P. Biran |

Periodicity | yearly recurring course |

Language of instruction | English |

Abstract | This is an introductory course in algebraic topology, which is the study of algebraic invariants of topological spaces. Topics covered include: singular homology, cell complexes and cellular homology, the Eilenberg-Steenrod axioms. |

Objective | |

Literature | 1) G. Bredon, "Topology and geometry", Graduate Texts in Mathematics, 139. Springer-Verlag, 1997. 2) A. Hatcher, "Algebraic topology", Cambridge University Press, Cambridge, 2002. Book can be downloaded for free at: Link See also: Link 3) E. Spanier, "Algebraic topology", Springer-Verlag |

Prerequisites / Notice | You should know the basics of point-set topology. Useful to have (though not absolutely necessary) basic knowledge of the fundamental group and covering spaces (at the level covered in the course "topology"). Some knowledge of differential geometry and differential topology is useful but not strictly necessary. Some (elementary) group theory and algebra will also be needed. |