402-0317-00L  Semiconductor Materials: Fundamentals and Fabrication

SemesterAutumn Semester 2020
LecturersS. Schön, W. Wegscheider
Periodicityyearly recurring course
Language of instructionEnglish


AbstractThis course gives an introduction into the fundamentals of semiconductor materials. The main focus is on state-of-the-art fabrication and characterization methods. The course will be continued in the spring term with a focus on applications.
ObjectiveBasic knowledge of semiconductor physics and technology. Application of this knowledge for state-of-the-art semiconductor device processing
Content1. Fundamentals of Solid State Physics
1.1 Semiconductor materials
1.2 Band structures
1.3 Carrier statistics in intrinsic and doped semiconductors
1.4 p-n junctions
1.5 Low-dimensional structures
2. Bulk Material growth of Semiconductors
2.1 Czochralski method
2.2 Floating zone method
2.3 High pressure synthesis
3. Semiconductor Epitaxy
3.1 Fundamentals of Epitaxy
3.2 Molecular Beam Epitaxy (MBE)
3.3 Metal-Organic Chemical Vapor Deposition (MOCVD)
3.4 Liquid Phase Epitaxy (LPE)
4. In situ characterization
4.1 Pressure and temperature
4.2 Reflectometry
4.3 Ellipsometry and RAS
4.4 LEED, AES, XPS
4.5 STM, AFM
5. The invention of the transistor - Christmas lecture
Lecture notesLink
Prerequisites / NoticeThe "compulsory performance element" of this lecture is a short presentation of a research paper complementing the lecture topics. Several topics and corresponding papers will be offered on the moodle page of this lecture.