327-2132-00L  Multifunctional Ferroic Materials: Growth, Characterisation, Simulation

SemesterAutumn Semester 2020
LecturersM. Trassin
Periodicityyearly recurring course
Language of instructionEnglish


AbstractThe course will explore the growth of (multi-) ferroic oxide thin films. The structural characterization and ferroic state investigation by force microscopy and by laser-optical techniques will be addressed.
Oxide electronics device concepts will be discussed.
Learning objectiveOxide films with a thickness of just a few atoms can now be grown with a precision matching that of semiconductors. This opens up a whole world of functional device concepts and fascinating phenomena that would not occur in the expanded bulk crystal. Particularly interesting phenomena occur in films showing magnetic or electric order or, even better, both of these ("multiferroics").

In this course students will obtain an overarching view on oxide thin epitaxial films and heterostructures design, reaching from their growth by pulsed laser deposition to an understanding of their magnetoelectric functionality from advanced characterization techniques. Students will therefore understand how to fabricate and characterize highly oriented films with magnetic and electric properties not found in nature.
ContentTypes of ferroic order, multiferroics, oxide materials, thin-film growth by pulsed laser deposition, molecular beam epitaxy, RF sputtering, structural characterization (reciprocal space - basics-, XRD for thin films, RHEED) epitaxial strain related effects, scanning probe microscopy techniques, laser-optical characterization, oxide thin film based devices and examples.