151-0525-00L  Dynamic Behavior of Materials

SemesterAutumn Semester 2020
LecturersD. Mohr, C. Roth, T. Tancogne-Dejean
Periodicityyearly recurring course
Language of instructionEnglish
Comment“Note: previous course title until HS19 "Wave Propagation in Solids".


AbstractLectures and computer labs concerned with the modeling of the deformation response and failure of engineering materials (metals, polymers and composites) subject to extreme loadings during manufacturing, crash, impact and blast events.
ObjectiveStudents will learn to apply, understand and develop computational models of a large spectrum of engineering materials to predict their dynamic deformation response and failure in finite element simulations. Students will become familiar with important dynamic testing techniques to identify material model parameters from experiments. The ultimate goal is to provide the students with the knowledge and skills required to engineer modern multi-material solutions for high performance structures in automotive, aerospace and naval engineering.
ContentTopics include viscoelasticity, temperature and rate dependent plasticity, dynamic brittle and ductile fracture; impulse transfer, impact and wave propagation in solids; computational aspects of material model implementation into hydrocodes; simulation of dynamic failure of structures;
Lecture notesSlides of the lectures, relevant journal papers and user manuals will be provided.
LiteratureVarious books will be recommended pertaining to the topics covered.
Prerequisites / NoticeCourse in continuum mechanics (mandatory), finite element method (recommended)